Skip to main content

Experimental Analysis of a Softening-Hardening Nonlinear Oscillator Using Control-Based Continuation

  • Conference paper
  • First Online:
Nonlinear Dynamics, Volume 1

Abstract

Control-based continuation is a recently-developed approach for testing nonlinear dynamic systems in a controlled manner and exploring their dynamic features as system parameters are varied. In this paper, control-based continuation is used to track directly in the experiment the steady-state periodic solutions of a single-degree-of-freedom oscillator presenting a softening-hardening restoring force. The oscillator forced response is investigated and fully characterized in forcing amplitude and frequency. The oscillator’s backbone curve is then extracted directly in the experiment by following a phase quadrature condition between the oscillator response and the base excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Renson, L., Noël, J.P., Kerschen, G.: Complex dynamics of a nonlinear aerospace structure: numerical continuation and normal modes. Nonlinear Dyn. 79(2), 1293–1309 (2015)

    Article  Google Scholar 

  2. Cammarano, A., Hill, T.L., Neild, S.A., Wagg, D.J.: Bifurcations of backbone curves for systems of coupled nonlinear two mass oscillator. Nonlinear Dyn. 77(1–2), 311–320 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Kuether, R.J., Renson, L., Detroux, T., Grappasonni, C., Kerschen, G., Allen, M.S.: Nonlinear normal modes, modal interactions and isolated resonance curves. J. Sound Vib. 351, 299–310 (2015)

    Article  Google Scholar 

  4. Kerschen, G., Peeters, M., Golinval, J.C., Vakakis, A.F.: Nonlinear normal modes, part I: a useful framework for the structural dynamicist. Mech. Syst. Signal Process. 23(1), 170–194 (2009)

    Article  Google Scholar 

  5. Peeters, M., Viguié, R., Sérandour, G., Kerschen, G., Golinval, J.C.: Nonlinear normal modes, part II: toward a practical computation using numerical continuation techniques. Mech. Syst. Signal Process. 23(1), 195–216 (2009)

    Article  Google Scholar 

  6. Peeters, M., Kerschen, G., Golinval, J.C.: Dynamic testing of nonlinear vibrating structures using nonlinear normal modes. J. Sound Vib. 330(3), 486–509 (2011)

    Article  Google Scholar 

  7. Peeters, M., Kerschen, G., Golinval, J.C.: Modal testing of nonlinear vibrating structures based on nonlinear normal modes: experimental demonstration. Mech. Syst. Signal Process. 25(4), 1227–1247 (2011)

    Article  Google Scholar 

  8. Londono, J.M., Neild, S.A., Cooper, J.E.: Identification of backbone curves of nonlinear systems from resonance decay responses. J. Sound Vib. 348(0), 224–238 (2015)

    Article  Google Scholar 

  9. Zapico-Valle, J.L., Garcia-Diéguez, M., Alonso-Camblor, R.: Nonlinear modal identification of a steel frame. Eng. Struct. 56(0), 246–259 (2013)

    Article  Google Scholar 

  10. Noël, J.P., Renson, L., Grappasonni, C., Kerschen, G.: Identification of nonlinear normal modes of engineering structures under broadband forcing. Mech. Syst. Signal Process. (in press). http://dx.doi.org/10.1016/j.ymssp.2015.04.016

  11. Renson, L., Gonzalez-Buelga, A., Barton, D.A.W., Neild, S.A.: Robust identification of backbone curves using control-based continuation. J. Sound Vib. (2015, in review)

    Google Scholar 

  12. Doedel, E.J., Paffenroth, R.C., Champneys, A.R., Fairgrieve, T.F., Kuznetsov, Y.A., Oldeman, B.E., Sandstede, B., Wang, X.J.: Auto2000: continuation and bifurcation software for ordinary differential equations, Technical Report, California Institute of Technology (2000). Available via http://cmvl.cs.concordia.ca/

  13. Dhooge, A., Govaerts, W., Kuznetsov, Y.A.: Matcont: a matlab package for numerical bifurcation analysis of odes. ACM Trans. Math. Softw. 29(2), 141–164 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dankowicz, H., Schilder, F.F.: Recipes for Continuation. Computational Science and Engineering, vol. 11. SIAM, Philadelphia (2013)

    Google Scholar 

  15. Bureau, E., Schilder, F., Ferreira Santos, I., Thomsen, J.J., Starke, J.: Experimental bifurcation analysis of an impact oscillator - tuning a non-invasive control scheme. J. Sound Vib. 332(22), 5883–5897 (2013)

    Article  Google Scholar 

  16. Barton, D.A.W.: Control-based continuation: bifurcation and stability analysis for physical experiments (2015). arXiv:1506.04052

    Google Scholar 

  17. Sieber, J., Krauskopf, B.: Control based bifurcation analysis for experiments. Nonlinear Dyn. 51(3), 365–377 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Barton, D.A.W., Mann, B.P., Burrow, S.G.: Control-based continuation for investigating nonlinear experiments. J. Vib. Control 18(4), 509–520 (2012)

    Article  MathSciNet  Google Scholar 

  19. Barton, D.A.W., Burrow, S.G.: Numerical continuation in a physical experiment: investigation of a nonlinear energy harvester. J. Comput. Nonlinear Dyn. 6(1) (2010)

    Google Scholar 

  20. Seydel, R.: Practical Bifurcation and Stability Analysis. Interdisciplinary Applied Mathematics, vol. 5. Springer, New York (2010)

    Google Scholar 

  21. Barton, D.A.W., Sieber, J.: Systematic experimental exploration of bifurcations with noninvasive control. Phys. Rev. E 87(5), 052916 (2013)

    Article  Google Scholar 

  22. Barton, D.A.W.: Real-time control hardware/software based on the BeagleBone Black (2015)

    Google Scholar 

  23. Rasmussen, C.E., Williams, C.: Gaussian Processes for Machine Learning. MIT, Cambridge (2006)

    MATH  Google Scholar 

Download references

Acknowledgements

L.R. is a Marie-Curie COFUND Postdoctoral Fellow of the University of Liége, co-funded by the European Union, S.A.N. is funded by EPSRC fellowship EP/K005375/1, D.A.W.B. by EPSRC grant EP/K032738/1, which are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Renson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Renson, L., Barton, D.A.W., Neild, S.S. (2016). Experimental Analysis of a Softening-Hardening Nonlinear Oscillator Using Control-Based Continuation. In: Kerschen, G. (eds) Nonlinear Dynamics, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-29739-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29739-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29738-5

  • Online ISBN: 978-3-319-29739-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics