Skip to main content

The Hierarchical Circuit for Executive Control of Movement

  • Chapter
  • First Online:
The Physics of the Mind and Brain Disorders

Part of the book series: Springer Series in Cognitive and Neural Systems ((SSCNS,volume 11))

Abstract

A major challenge in neuroscience research is the understanding of the vast universe of human brain and its mind. In this context, the ability of the mind to control behavior relies upon the executive control of movement. Herein, we focus on the hierarchical circuitry of the brain that exercises the executive control of movement. This executive mechanism spans hierarchically over frontal/parietal/temporal cortices, subcortical structures in basal ganglia and thalamus, brainstem and spinal cord. To address the hierarchical executive mechanism of movement, we will examine its frontal/parietal cortical microcircuits interconnected in thalamo-cortical loops via cortico-striatal projections, and further to the mesencephalic locomotor region and central pattern generators in the spinal cord for locomotor control. Spinal locomotor circuits are enabled by parallel activation/modulation from descending reticulospinal and monoaminergic pathways. The use of various stimulation approaches developed recently is examined in terms of preclinical (animal experiments) and clinical applications to human brain disorders. Future clinical studies on the pathological aspects of movement will employ novel, deep brain stimulation that is capable to function in a closed-loop manner, adjusting therapy delivery to the patient’s level of disease impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alam M, Schwabe K, Krauss JK (2011) The pedunculopontine nucleus area: critical evaluation of interspecies differences relevant for its use as a target for deep brain stimulation. Brain 134: 11–23

    Google Scholar 

  • Alexander GE, DeLong ME, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    CAS  Google Scholar 

  • Andermann ML, Kerlin AM, Roumis DK, Glickfeld LL, Reid RC (2011) Functional specialization of mouse higher visual cortical areas. Neuron 72:1025–1039

    CAS  Google Scholar 

  • Andujar JE, Lajoie K, Drew T (2010) A contribution of area 5 of the posterior parietal cortex to the planning of visually guided locomotion: limb-specific and limb-independent effects. J Neurophysiol 103:986–1006

    Google Scholar 

  • Behbehani MM, Zemlan FP (1986) Response of nucleus raphe magnus neurons to electrical stimulation of nucleus cuneiformis: role of acetylcholine. Brain Res 369:110–118

    CAS  Google Scholar 

  • Bender F, Gorbati M, Cadavieco MC, Denisova N, Gao X, Holman C, Korotkova T, Ponomarenko A (2015) Theta oscillations regulate the speed of locomotion via a hippocampus to lateral septum pathway. Nat Commun 6:8521

    CAS  Google Scholar 

  • Bland BH, Oddie SD (2001) Theta band oscillation and synchrony in the hippocampal formation and associated structures: the case for its role in sensorimotor integration. Behav Brain Res 127:119–136

    CAS  Google Scholar 

  • Bouvier J, Caggiano V, Leiras R, Caldeira V, Bellardita C, Balueva K, Fuchs A, Kiehn O (2015) Descending command neurons in the brainstem that halt locomotion. Cell 163:1191–1203

    CAS  Google Scholar 

  • Brandão ML, Anseloni VZ, Pandóssio JE, Araújo JE, Castilho VM (1999) Neurochemical mechanisms of the defensive behavior in the dorsal midbrain. Neurosci Biobehav Rev 23: 863–875

    Google Scholar 

  • Bretzner F, Brownstone RM (2013) Lhx3-Chx10 reticulospinal neurons in locomotor circuits. J Neurosci 33:14681–14692. https://doi.org/10.1523/JNEUROSCI.5231-12.2013.

    Article  CAS  Google Scholar 

  • Brodal A (1981) Neurological anatomy in relation to clinical medicine, 3rd edn. Oxford University Press, New York, pp 180–293

    Google Scholar 

  • Brumley MR, Hentall ID, Pinzon A, Kadam BH, Blythe A, Sanchez FJ, Noga BR (2007) Serotonin concentrations in the lumbosacral spinal cord of the adult rat following microinjection or dorsal surface application. J Neurophysiol 98:1440–1450

    Google Scholar 

  • Bugbee NM, Goldman-Rakic PS (1983) Columnar organization of corticocortical projections in squirrel and rhesus monkeys: similarity of column width in species differing in cortical volume. J Comp Neurol 220:355–364

    CAS  Google Scholar 

  • Buxhoeveden DP, Casanova MF (2002) The minicolumn hypothesis in neuroscience. Brain 125:935–951

    Google Scholar 

  • Cabaj AM, Majczynski H, Couto E, Gardiner PF, Stecina K, Slawinska U, Jordan LM (2016) Serotonin controls initiation of locomotion and afferent modulation of coordination via 5-HT7 receptors in adult rats. J Physiol Lond. doi:10.1113/JP272271

  • Carello CD, Krauzilis RJ (2004) Manipulating intent: evidence for a causal role of the superior colliculus in target selection. Neuron 43:575–583

    CAS  Google Scholar 

  • Casanova MF (2008) The significance of minicolumnar size variability in autism: a perspective from comparative anatomy. In: Zimmerman A (ed) Autism current theories and evidence, current clinical neurology, chapter 16. Humana Press, New York, pp 349–360

    Google Scholar 

  • Casanova MF, Trippe JT II, Switala AE (2007) A temporal continuity to the vertical organization of the human neocortex. Cereb Cortex 17:130–137

    Google Scholar 

  • Casanova MF, Kreczmanski P, Trippe J II, Switala A, Heinsen H, Steinbusch HW, Schmitz C (2008) Neuronal distribution in the neocortex of schizophrenic patients. Psychiatry Res 158:267–277

    Google Scholar 

  • Cazalets JR, Borde M, Clarac F (1995) Localization and organization of the central pattern generator for hindlimb locomotion in newborn rat. J Neurosci 15:4943–4951

    CAS  Google Scholar 

  • Clark FM, Proudfit HK (1991) The projection of locus coeruleus neurons to the spinal cord in the rat determined by anterograde tracing combined with immunocytochemistry. Brain Res 538:231–245

    CAS  Google Scholar 

  • Coles SK, Iles JF, Nicolopoulos-Stournaras S (1989) The mesencephalic centre controlling locomotion in the rat. Neuroscience 28:149–157

    CAS  Google Scholar 

  • Constantinople CM, Bruno RM (2013) Deep cortical layers are activated directly by thalamus. Science 340(6140):1591–1594

    CAS  Google Scholar 

  • Cowley KC, Schmidt BJ (1997) Regional distribution of the locomotor pattern generating network in the neonatal rat spinal cord. J Neurophysiol 77:247–259

    CAS  Google Scholar 

  • Dai X, Douglas JR, Noga BR, Jordan LM (2005) Localization of spinal neurons activated during locomotion using the c-fos immunohistochemical method. J Neurophysiol 93:3442–3452. 2005

    CAS  Google Scholar 

  • Dean P, Redgrave P, Sahibzada N, Tsuji K (1986) Head and body movements produced by electrical stimulation of superior colliculus in rats: effects of interruption of crossed tectoreticulospinal pathway. Neuroscience 19:367–380

    CAS  Google Scholar 

  • Dean P, Redgrave P, Westby GW (1989) Event or emergency? Two response systems in the mammalian superior colliculus. Trends Neurosci 12:137–147

    CAS  Google Scholar 

  • Delivet-Mongrain H, Leblond H, Rossignol S (2008) Effects of localized intraspinal injections of a noradrenergic blocker on locomotion of high decerebrate cats. J Neurophysiol 100:907–921

    Google Scholar 

  • DeLong MR, Wichmann T (2007) Circuits and circuit disorders of the basal ganglia. Arch Neurol 64:20–24

    Google Scholar 

  • DeLong M, Wichmann T (2017) Changing views of basal ganglia circuits and circuit disorders. Clin EEG Neurosci 41(2):61–67

    Google Scholar 

  • Demain A, Westby GW, Fernandez-Vidal S, Karachi C, Bonneville F, Do MC, Delmaire C, Dormont D, Bardinet E, Agid Y, Chastan N, Welter ML (2014) High-level gait and balance disorders in the elderly: a midbrain disease? J Neurol 261:196–206. doi:10.1007/s00415-013-7174-x

    Article  Google Scholar 

  • Deng H, Xiao X, Wang Z (2016) Periaqueductal gray neuronal activities underlie different aspects of defensive behaviors. J Neurosci 36:7580–7588

    CAS  Google Scholar 

  • dos Santos LM, Ferro MM, Mota-Ortiz SR, Baldo MV, da Cunha C, Canteras NS (2007) Effects of ventrolateral striatal inactivation on predatory hunting. Physiol Behav 90:669–673

    Google Scholar 

  • Douglas JR, Noga BR, Dai X, Jordan LM (1993) The effects of intrathecal administration of excitatory amino acid agonists and antagonists on the initiation of locomotion in the adult cat. J Neurosci 13:990–1000

    CAS  Google Scholar 

  • Drew T (1993) Motor cortical activity during voluntary gait modifications in the cat. I. Cells related to the forelimbs. J Neurophysiol 70:179–199. pmid:8360715

    CAS  Google Scholar 

  • Drew T, Rossignol S (1984) Phase-dependent responses evoked in limb muscles by stimulation of medullary reticular formation during locomotion in thalamic cats. J Neurophysiol 52:653–675

    CAS  Google Scholar 

  • Drew T, Dubuc R, Rossignol S (1986) Discharge patterns of reticulospinal and other reticular neurons in chronic, unrestrained cats walking on a treadmill. J Neurophysiol 55:375–401

    CAS  Google Scholar 

  • Drew T, Jiang W, Widajewicz W (2002) Contributions of the motor cortex to the control of the hindlimbs during locomotion in the cat. Brain Res Rev 40:178–191. doi:10.1016/S0165-0173(02)00200-X. pmid:12589916

    Article  Google Scholar 

  • Drew T, Andujar JE, Lajoie K, Yakovenko S (2008) Cortical mechanisms involved in visuomotor coordination during precision walking. Brain Res Rev 57:199–211

    Google Scholar 

  • Edwards SB (1975) Autoradiographic studies of the projections of the midbrain reticular formation: descending projections of the nucleus cuneiformis. J Comp Neurol 161:341–358

    CAS  Google Scholar 

  • Eichenbaum H (2017) The role of the hippocampus in navigation is memory. J Neurophysiol 117:1785–1796

    Google Scholar 

  • Ferraye MU, Debu B, Fraix V, Goetz L, Ardouin C, Yelnik J, Henry-Lagrange C, Seigneuret E, Piallat B, Krack P, Le Bas J-F, Benabid A-L, Chabardès S, Pollak P (2010) Effects of pedunculopontine nucleus area stimulation on gait disorders in Parkinson’s disease. Brain 133:205–214

    CAS  Google Scholar 

  • Fukuyama H, Ouchi Y, Matsuzaki S, Nagahama Y, Yamaguchi H, Ogawa M, Kimura J, Shibasaki K (1997) Brain functional activity during gait in normal subjects: a SPECT study. Neurosci Lett 228:183–186

    CAS  Google Scholar 

  • Furigo IC, De Oliveira WF, De Oliveira AR, Colmoli E, Baldo MVC, Mota-Ortiz SR, Canteras NS (2010) The role of the superior colliculus in predatory hunting. Neuroscience 165:1–15

    CAS  Google Scholar 

  • Fuster JM (1990) Prefrontal cortex and the bridging of temporal gaps in the perception-action cycle. Ann N Y Acad Sci 608:318–329

    CAS  Google Scholar 

  • Fuster JM (2000) Executive frontal functions. Exp Brain Res 133:66–70

    CAS  Google Scholar 

  • Fuster JM (2001) The prefrontal cortex-an update: time is of the essence. Neuron 30:319–333

    CAS  Google Scholar 

  • Fuster JM, Bressler SL (2012) Cognit activation: a mechanism enabling temporal integration in working memory. Trends Cogn Sci 16:207–218

    Google Scholar 

  • Fuster JM, Bodnar M, Kroger JK (2000) Cross-modal and cross-temporal association in neurons of frontal cortex. Nature 405:347–351

    CAS  Google Scholar 

  • Garcia-Rill E (1983) Connections of the mesencephalic locomotor region (MLR) III. Intracellular recordings. Brain Res Bull 10:73–81

    CAS  Google Scholar 

  • Garcia-Rill E, Skinner RD (1987a) The mesencephalic locomotor region. I. Activation of a medullary projection site. Brain Res 411:1–12

    CAS  Google Scholar 

  • Garcia-Rill E, Skinner RD (1987b) The mesencephalic locomotor region. II. Projections to reticulospinal neurons. Brain Res 411:13–20

    CAS  Google Scholar 

  • Garcia-Rill E, Skinner RD, Gilmore SA (1981) Pallidal projections to the mesencephalic locomotor region (MLR) in the cat. Am J Anat 161:311–321

    CAS  Google Scholar 

  • Garcia-Rill E, Skinner RD, Gilmore SA, Owings R (1983a) Connections of the mesencephalic locomotor region (MLR) II. Afferents and efferents. Brain Res Bull 10:63–71

    CAS  Google Scholar 

  • Garcia-Rill E, Skinner RD, Jackson MB, Smith MM (1983b) Connections of the mesencephalic locomotor region (MLR) I. Substantia nigra afferents. Brain Res Bull 10:57–62

    CAS  Google Scholar 

  • Garcia-Rill E, Skinner RD, Fitzgerald JA (1985) Chemical activation of the mesencephalic locomotor region. Brain Res 330:43–54

    CAS  Google Scholar 

  • Garcia-Rill E, Skinner RD (1988) Modulation of rhythmic function in the posterior midbrain. Neuroscience 27:639–654

    CAS  Google Scholar 

  • Garcia-Rill E, Kinjo N, Atsuta Y, Ishikawa Y, Webber M, Skinner RD (1990) Posterior midbrain-induced locomotion. Brain Res Bull 24:499–508

    CAS  Google Scholar 

  • Georgopoulos AP, Merchant H, Naselaris T, Amirikian B (2007) Mapping of the preferred direction in the motor cortex. Proc Natl Acad Sci U S A. 2007 Jun 26 104(26):11068–11072

    CAS  Google Scholar 

  • Gerin C, Privat A (1998) Direct evidence for the link between monoaminergic descending pathways and motor activity. II. A study with microdialysis probes implanted in the ventral horn of the spinal cord. Brain Res 794:169–173

    CAS  Google Scholar 

  • Gerin C, Legrand A, Privat A (1994) Study of 5-HT release with a chronically implanted microdialysis probe in the ventral horn of the spinal cord of unrestrained rats during exercise on a treadmill. J Neurosci Methods 52:129–141

    CAS  Google Scholar 

  • Gerin C, Becquet D, Privat A (1995) Direct evidence for the link between monoaminergic descending pathways and motor activity. I. A study with microdialysis probes implanted in the ventral funiculus of the spinal cord. Brain Res 704:191–201

    CAS  Google Scholar 

  • Gerin C, Teilhac J-R, Smith K, Privat A (2008) Motor activity induces release of serotonin in the dorsal horn of the rat lumbar spinal cord. Neurosci Lett 436:91–95

    CAS  Google Scholar 

  • Gimenez y Ribotta M, Provencher J, Feraboli-Lohnherr D, Rossignol S, Privat A, Orsal D (2000) Activation of locomotion in adult chronic spinal rats is achieved by transplantation of embryonic raphe cells reinnervating a precise lumbar level. J Neurosci 20:5144–5152

    Google Scholar 

  • Giroux N, Reader TA, Rossignol S (2001) Comparison of the effect of intrathecal administration of clonidine and yohimbine on the locomotion of intact and spinal cats. J Neurophysiol 85: 2516–2536

    CAS  Google Scholar 

  • Goetz L, Piallat B, Bhattacharjee M, Mathieu H, David O, Chabardès S (2016) On the role of the pedunculopontine nucleus and mesencephalic reticular formation in locomotion in nonhuman primates. J Neurosci 36:4917–4929

    CAS  Google Scholar 

  • Goldman-Rakic PS (1996) The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive. Philos Trans R Soc Lond Ser B Biol Sci 351(1346):1445–1453

    CAS  Google Scholar 

  • Grillner S, Shik ML (1973) On the descending control of the lumbosacral spinal cord from the “mesencephalic locomotor region”. Acta Physiol Scand 87:320–333

    CAS  Google Scholar 

  • Grillner S, Georgopoulos AP, Jordan LM (1997) Selection and initiation of motor behavior. In: Stein PSG, Grillner S, Selverston AI, Stuart DG (eds) Neurons, network, and motor behavior. MIT Press, Cambridge, pp 3–19

    Google Scholar 

  • Grillner S, Wallén P, Saitoh K, Kozlov A, Robertson B (2008) Neural bases of goal-directed locomotion in vertebrates – an overview. Brain Res Rev 57:2–12

    Google Scholar 

  • Groenewegen HJ, Berendse HW, Haber SN (1993) Organization of the output of the ventral striatopallidal system in the rat: ventral pallidal afferents. Neuroscience 57:113–142

    CAS  Google Scholar 

  • Gut NK, Winn P (2015) Deep brain stimulation of different pedunculopontine targets in a novel rodent model of parkinsonism. J Neurosci 35:4792–4803

    CAS  Google Scholar 

  • Hägglund M, Borgius L, Dougherty KJ, Kiehn O (2010) Activation of groups of excitatory neurons in the mammalian spinal cord or hindbrain evokes locomotion. Nat Neurosci 13:246–252

    Google Scholar 

  • Halladay LR, Blair HT (2015) Distinct ensembles of medial prefrontal cortex neurons are activated by threatening stimuli that elicit excitation vs. inhibition of movement. J Neurophysiol 114:793–807

    CAS  Google Scholar 

  • Hamani C, Moro E, Lozano AM (2011) The pedunculopontine nucleus as a target for deep brain stimulation. J Neural Transm (Vienna) 118:1461–1468. doi:10.1007/s00702-010-0547-8

    Article  Google Scholar 

  • He XW, Wu CP (1985) Connections between pericruciate cortex and the medullary reticulospinal neurons in cat: an electrophysiological study. Exp Brain Res 61:109–116

    CAS  Google Scholar 

  • Heise CE, Mitrofanis J (2006) Fos immunoreactivity in some locomotor neural centres of 6OHDA-lesioned rats. Anat Embryol (Berl) 211:659–671. doi:10.1007/s00429-006-0130-0

    Article  CAS  Google Scholar 

  • Hentall ID, Mesigil R, Pinzon A, Noga BR (2003) Temporal and spatial profiles of pontine-evoked monoamine release in the rat’s spinal cord. J Neurophysiol 89:2943–2951

    CAS  Google Scholar 

  • Hentall ID, Pinzon A, Noga BR (2006) Spatial and temporal patterns of serotonin release in the rat's lumbar spinal cord following electrical stimulation of the nucleus raphe magnus. Neuroscience 142:893–903

    CAS  Google Scholar 

  • Herkenham M (1979) The afferent and efferent connections of the ventromedial thalamic nucleus in the rat. J Comp Neurol 183:487–518

    CAS  Google Scholar 

  • Hikosaka O, Takikawa Y, Kawagoe R (2000) Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev 80:953–978

    CAS  Google Scholar 

  • Hirabayashi T, Takeuchi D, Tamura K, Miyashita Y (2013a) Functional microcircuit recruited during retrieval of object association memory in monkey perirhinal cortex. Neuron 77:192–203

    CAS  Google Scholar 

  • Hirabayashi T, Takeuchi D, Tamura K, Miyashita Y (2013b) Microcircuits for hierarchical elaboration of object coding across primate temporal areas. Science 341:191–195

    CAS  Google Scholar 

  • Hirsch EC, Graybiel AM, Duyckaerts C, Javoy-Agid F (1987) Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy. Proc Natl Acad Sci U S A 84:5976–5980

    CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1969) Anatomical demonstration of columns in the monkey striate cortex. Nature 221(5182):747–750

    CAS  Google Scholar 

  • Humphreys J, Whelan P (2012) Dopamine exerts activation-dependent modulation of spinal locomotor circuits in the neonatal mouse. J Neurophysiol 108:3370–3381

    CAS  Google Scholar 

  • Iwakiri H, Oka T, Takakusaki K, Mori S (1995) Stimulus effects of the medial pontine reticular formation and the mesencephalic locomotor region upon medullary reticulospinal neurons in acute decerebrate cats. Neurosci Res 23:47–53

    CAS  Google Scholar 

  • Jacobs BL, Fornal CA (1995) Activation of 5-HT neuronal activity during motor behavior. Semin Neurosci 7:401–408

    CAS  Google Scholar 

  • Jahn K, Deutschlander A, Stephan T, Kalla R, Wiesmann M, Strupp M, Brandt T (2008) Imaging human supraspinal locomotor centers in brainstem and cerebellum. NeuroImage 39:786–792

    Google Scholar 

  • Jankowska E, Jukes MGM, Lund S, Lundberg A (1967) The effect of DOPA on the spinal cord. VI. Half-centre organization of interneurons transmitting effects from the FRA. Acta Physiol Scand 70:389–402

    CAS  Google Scholar 

  • Jones EG (2000) Microcolumns in the cerebral cortex. Proc Natl Acad Sci U S A 97:5019–5021

    CAS  Google Scholar 

  • Jones EG, Rakic P (2010) Radial columns in cortical architecture: it is the composition that counts. Cereb Cortex 20:2261–2264

    Google Scholar 

  • Jordan LM (1991) Brainstem and spinal cord mechanisms for the initiation of locomotion. In: Shimamura M, Grillner S, Edgerton VR (eds) Neurobiological basis of human locomotion. Japan Scientific Societies Press, Tokyo, pp 3–20

    Google Scholar 

  • Jordan LM (1998) Initiation of locomotion in mammals. Ann N Y Acad Sci 860:83–93

    CAS  Google Scholar 

  • Jordan LMJ, Sławińska U (2014) The brain and spinal cord networks controlling locomotion. In: Faingold CL, Blumenfeld H (eds) Neuronal networks in brain function, CNS disorders, and therapeutics. Elsevier, pp 215–233

    Google Scholar 

  • Jordan LM, Liu J, Hedlund PB, Akay T, Pearson KG (2008) Descending command systems for the initiation of locomotion in mammals. Brain Res Rev 57:183–191

    CAS  Google Scholar 

  • Jordan LM, McVagh JR, Noga BR, Cabaj AM, Majczynski H, Slawinska U, Provencher J, Leblond H, Rossignol S (2014) Cholinergic mechanisms in spinal locomotion-potential target for rehabilitation approaches. Front Neural Circ 8:132. doi:10.3389/fncir.2014.00132

    Article  Google Scholar 

  • Kaas JH (2012) Evolution of columns, modules, and domains in the neocortex of primates. Proc Natl Acad Sci U S A 109(Suppl 1):10655–10660

    CAS  Google Scholar 

  • Kably B, Drew T (1998) Corticoreticular pathways in the cat. II. Discharge activity of neurons in area 4 during voluntary gait modifications. J Neurophysiol 80:406–424

    CAS  Google Scholar 

  • Karachi C, Grabli D, Bernard FA, Tandé D, Wattiez N, Belaid H, Bardinet E, Prigent A, Nothacker HP, Hunot S, Hartmann A, Lehéricy S, Hirsch EC, François C (2010) Cholinergic mesencephalic neurons are involved in gait and postural disorders in Parkinson disease. J Clin Invest 120:2745–2754

    CAS  Google Scholar 

  • Karachi C, Andre A, Bertasi E, Bardinet E, Lehericy S, Bernard FA (2012) Functional parcellation of the lateral mesencephalus. J Neurosci 32:9396–9401. doi:10.1523/JNEUROSCI.0509-12.2012

    Article  CAS  Google Scholar 

  • Kasicki S, Korczyński R, Romaniuk JR, Sławińska U (1991) Two locomotor strips in the diencephalon of thalamic cats. Acta Neurobiol Exp 51:137–143

    Google Scholar 

  • Keizer K, Kuypers HGJM (1984) Distribution of corticospinal neurons with collaterals to lower brain stem reticular formation in cat. Exp Brain Res 54:107–120

    CAS  Google Scholar 

  • Kemere C, Carr MF, Karlsson MP, Frank LM (2013) Rapid and continuous modulation of hippocampal network state during exploration of new places. PLoS One 8:e73114

    CAS  Google Scholar 

  • Kiehn O (2016) Decoding the organization of spinal circuits that control locomotion. Nat Rev Neurosci 17:224–238. doi:10.1038/nrn.2016.9

    Article  CAS  Google Scholar 

  • Kimura M, Minamimoto T, Matsumoto N, Hori Y (2004) Monitoring and switching of cortico-basal ganglia loop functions by the thalamo-striatal system. Neurosci Res 48(4):355–360. doi:10.1016/j.neures.2003.12.002

    Article  Google Scholar 

  • Kjaerulff O, Kiehn O (1996) Distribution of networks generating and coordinating locomotor activity in the neonatal rat spinal cord in vitro: a lesion study. J Neurosci 16:5777–5794

    CAS  Google Scholar 

  • Koutsikou S, Watson TC, Crook JJ, Leith JL, Lawrenson CL, Apps R, Lumb BM (2015) The periaqueductal gray orchestrates sensory and motor circuits at multiple levels of the neuraxis. J Neurosci 35:14132–14147

    CAS  Google Scholar 

  • Kravitz AV, Freeze BS, Parker PR, Kay K, Thwin MT, Deisseroth K, Kreitzer AC (2010) Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466:622–626

    CAS  Google Scholar 

  • Kremer E, Lev-Tov A (1997) Localization of the spinal network associated with generation of hindlimb locomotion in the neonatal rat and organization of its transverse coupling system. J Neurophysiol 77:1155–1170

    CAS  Google Scholar 

  • Kritzer MF, Goldman-Rakic PS (1995) Intrinsic circuit organization of the major layers and sublayers of the dorsolateral prefrontal cortex in the rhesus monkey. J Comp Neurol 359: 131–143

    CAS  Google Scholar 

  • Kuypers HGJM, Maisky VA (1977) Funicular trajectories of descending brain stem pathways in cat. Brain Res 136:159–165

    CAS  Google Scholar 

  • Kuypers HGJM (1981) Anatomy of descending pathways. In: Brooks VB (ed) Handbook of physiology, sec. 1, the nervous system, vol. II, motor control, part 1. American Physiological Society, Bethesda, pp 597–666

    Google Scholar 

  • Kwiat GC, Basbaum AI (1992) The origin of brainstem noradrenergic and serotonergic projections to the spinal cord dorsal horn in the rat. Somatosens Mot Res 9:157–173

    CAS  Google Scholar 

  • la Fougére C, Zwergal A, Rominger A, Förster S, Fesl G, Dieterich M, Brandt T, Strupp M, Bartenstein P, Jahn K (2010) Real versus imagined locomotion: a [18F]-FDG PET-fMRI comparison. NeuroImage 50:1589–1598

    Google Scholar 

  • Lebedev MA, Wise SP (2002) Insights into seeing and grasping: distinguishing the neural correlates of perception and action. Behav Cogn Neurosci Rev 1(2):108–129

    Google Scholar 

  • Lee AM, Hoy JL, Bonci A, Wilbrecht L, Stryker MP, Niell CM (2014) Identification of a brainstem circuit regulating visual cortical state in parallel with locomotion. Neuron 83:455–466

    CAS  Google Scholar 

  • Leise EM (1990) Modular construction of nervous systems: a basic principle of design for invertebrates and vertebrates. Brain Res Brain Res Rev 15:1–23

    CAS  Google Scholar 

  • Liu J, Jordan LM (2005) Stimulation of the parapyramidal region of the neonatal rat brain stem produces locomotor-like activity involving spinal 5-HT7 and 5-HT2A receptors. J Neurophysiol 94:1392–1404

    CAS  Google Scholar 

  • López Ruiz JR, Osuna Carrasco LP, López Valenzuela CL, Franco Rodríguez NE, de la Torre Valdovinos B, Jiménez Estrada I, Dueñas Jiménez JM, Dueñas Jiménez SH (2015) The hippocampus participates in the control of locomotion speed. Neuroscience 311:207–215

    Google Scholar 

  • Lynd-Balta E, Haber SN (1994) Primate striatonigral projections: a comparison of the sensorimotor-related striatum and the ventral striatum. J Comp Neurol 345:562–578

    CAS  Google Scholar 

  • Mahan MY, Georgopoulos AP (2013) Motor directional tuning across brain areas: directional resonance and the role of inhibition for directional accuracy. Front Neural Circ. 2013 7:92. doi:10.3389/fncir.2013.00092

    Article  Google Scholar 

  • Majczynski H, Cabaj A, Slawinska U, Górska T (2006) Intrathecal administration of yohimbine impairs locomotion in intact rats. Behav Brain Res 175:315–322

    CAS  Google Scholar 

  • Marcoux J, Rossignol S (2000) Initiating or blocking locomotion in spinal cats by applying noradrenergic drugs to restricted lumbar spinal segments. J Neurosci 20:8577–8585

    CAS  Google Scholar 

  • Masdeu JC, Alampur U, Cavaliere R, Tavoulareas G (1994) Astasia and gait failure with damage of the pontomesencephalic locomotor region. Ann Neurol 35:619–621

    CAS  Google Scholar 

  • Noga BR, Pinzon A, Mesigil RP, Hentall ID (2004) Steady-state levels of monoamines in the rat lumbar spinal cord: spatial mapping and the effect of acute spinal cord injury. J Neurophysiol 92:567–577

    CAS  Google Scholar 

  • Matsuyama K, Drew T (1997) Organization of the projections from the pericruciate cortex to the pontomedullary brainstem of the cat: a study using the anterograde tracer Phaseolus vulgaris-leucoagglutinin. J Comp Neurol 389:617–641

    CAS  Google Scholar 

  • Matsuyama K, Mori F, Nakajima K, Drew T, Aoki M, Mori S (2004) Locomotor role of the corticoreticular-reticulopinal-spinal interneuronal system. Prog Brain Res 143:239–249

    Google Scholar 

  • Mazzone P, Lozano A, Stanzione P, Galati S, Scarnati E, Peppe A, Stefani A (2005) Implantation of human pedunculopontine nucleus: a safe and clinically relevant target in Parkinson’s disease. Neuroreport 16:1877–1881

    Google Scholar 

  • McFarland NR, Haber SN (2002) Thalamic relay nuclei of the basal ganglia form both reciprocal and nonreciprocal cortical connections, linking multiple frontal cortical areas. J Neurosci 22:8117–8132

    CAS  Google Scholar 

  • McHaffie JG, Stanford TR, Stein BE, Coizet V, Redgrave P (2005) Subcortical loops through the basal ganglia. Trends Neurosci 28:401–407

    CAS  Google Scholar 

  • Melnikova ZL (1975) The locomotion of the rat evoked by stimulation of the midbrain. Vestn Moscow Univ 2:45–51

    Google Scholar 

  • Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci. 2001 24:167–202

    CAS  Google Scholar 

  • Miller EK, Phelps EA (2010) Current opinion in neurobiology – cognitive neuroscience 2010. Curr Opin Neurobiol 20(2):141–142

    CAS  Google Scholar 

  • Miller S, Van Der burg J, Van Der Meche FGA (1975) Locomotion in the cat: basic programmes of movement. Brain Res 91:239–253

    CAS  Google Scholar 

  • Milner KL, Mogenson GJ (1988) Electrical and chemical activation of the mesencephalic and subthalamic locomotor regions in freely moving rats. Brain Res 452:273–285

    CAS  Google Scholar 

  • Mitchell IJ, Dean P, Redgrave P (1988) The projection from superior colliculus to cuneiform area in the rat. Part II: defense-like responses to stimulation with glutamate in cuneiform nucleus and surrounding structures. Exp Brain Res 72:626–639

    CAS  Google Scholar 

  • Mori S, Nishimura H, Kurakami C, Yamamura T, Aoki M (1978) Controlled locomotion in the mesencephalic cat: distribution of facilitatory and inhibitory regions within pontine tegmentum. J Neurophysiol 41:1580–1591

    CAS  Google Scholar 

  • Mori S, Kawahara K, Sakamoto T, Aoki M, Tomiyama T (1982) Setting and resetting of postural muscle tone in the decerebrate cat by stimulation of the brain stem. J Neurophysiol 48:737–748

    CAS  Google Scholar 

  • Mori S, Sakamoto T, Ohta Y, Takakusaki K, Matsuyama K (1989) Site-specific postural and locomotor changes evoked in awake, freely moving intact cats by stimulating the brainstem. Brain Res 505:66–74

    CAS  Google Scholar 

  • Mori S, Matsuyama K, Kohyama J, Kobayashi Y, Takakusaki K (1992) Neuronal constituents of postural and locomotor control systems and their interactions in cats. Brain Dev 14(Suppl):S109–S120

    Google Scholar 

  • Moser EI, Kropff E, Moser MB (2008) Place cells, grid cells, and the brain’s spatial representation system. Annu Rev Neurosci 31:69–89. doi:10.1146/annurev.neuro. 31.061307.090723

  • Mountcastle VB (1957) Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol 20:408–434

    CAS  Google Scholar 

  • Mountcastle VB (1997) The columnar organization of the neocortex. Brain 120(4):701–722

    Google Scholar 

  • Mountcastle VB, Berman A, Davies P (1955) Topographic organization and modality representation in the first somatic area of cat’s cerebral cortex by method of single unit analysis. Am J Phys 183:464

    Google Scholar 

  • Noga BR, Opris I (2017) The locomotor system: from symmetry to symmetry-breaking. (Chapter 8). Physics of the mind and brain disorders: integrated neural circuits supporting the emergence of mind. Springer Series in Cognitive and Neural Systems, New York. Ioan Opris, Manuel F. Casanova. 978-3-319-29674-6

    Google Scholar 

  • Noga BR, Kettler J, Jordan LM (1988) Locomotion produced in mesencephalic cats by injections of putative transmitter substances and antagonists into the medial reticular formation and the pontomedullary locomotor strip. J Neurosci 8:2074–2086

    CAS  Google Scholar 

  • Noga BR, Kriellaars DJ, Jordan LM (1991) The effect of selective brainstem or spinal cord lesions on treadmill locomotion evoked by stimulation of the mesencephalic or pontomedullary locomotor regions. J Neurosci 11:1691–1700

    CAS  Google Scholar 

  • Noga BR, Fortier PA, Kriellaars DJ, Dai X, Detillieux GR, Jordan LM (1995) Field potential mapping of neurons in the lumbar spinal cord activated following stimulation of the mesencephalic locomotor region. J Neurosci 15:2203–2217

    CAS  Google Scholar 

  • Noga BR, Kriellaars DJ, Brownstone RM, Jordan LM (2003) Mechanism for activation of locomotor centers in the spinal cord by stimulation of the mesencephalic locomotor region. J Neurophysiol 90:1464–1478. doi:10.1152/jn.00034.2003

    Article  Google Scholar 

  • Noga BR, Johnson DMG, Riesgo M, Pinzon A (2009) Locomotor-activated neurons of the cat. I. Serotonergic innervation and co-localization of 5-HT7, 5-HT2A and 5-HT1A receptors in the thoraco-lumbar spinal cord. J Neurophysiol 102:1560–1576. PMID: 19571190

    CAS  Google Scholar 

  • Noga BR, Johnson DMG, Riesgo MI, Pinzon A (2011) Locomotor-activated neurons of the cat. II. Noradrenergic innervation and co-localization of NA’1A/C and NA’2B receptors in the thoraco-lumbar spinal cord. J Neurophysiol 105:1835–1849

    Google Scholar 

  • Noga BR, Sanchez FJ, Villamil L, O’Toole C, Kasicki S, Olszewski M, Cabaj AM, Majczyński H, Sławińska U, Jordan LM (2017a) LFP oscillations in the mesencephalic locomotor region during voluntary locomotion. Front Neural Circ 11:34. doi:10.3389/fncir.2017.00034

    Article  CAS  Google Scholar 

  • Noga BR, Turkson RP, Xie S, Taberner A, Pinzon A, Hentall ID (2017b) Monoamine release in the cat lumbar spinal cord during fictive locomotion evoked by the mesencephalic locomotor region. Front. Neural Circuits doi: 10.3389/fncir.2017.00059 2017

    Google Scholar 

  • O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 34:171–175

    Google Scholar 

  • Opris I (2013) Inter-laminar microcircuits across the neocortex: repair and augmentation. Front Syst Neurosci 7:80. doi:10.3389/fnsys.2013.00080

    Article  Google Scholar 

  • Opris I, Casanova MF (2014) Prefrontal cortical minicolumn: from executive control to disrupted cognitive processing. Brain 137(7):1863–1875. doi:10.1093/brain/awt359

    Article  Google Scholar 

  • Opris I, Ferrera VP (2014) Modifying cognition and behavior with electrical microstimulation: implications for cognitive prostheses. Neurosci Biobehav Rev 47:321–335. doi:10.1016/j.neubiorev.2014.09.003

    Article  Google Scholar 

  • Opris I, Hampson RE, Stanford TR, Gerhardt GA, Deadwyler SA (2011) Neural activity in frontal cortical cell layers: evidence for columnar sensorimotor processing. J Cogn Neurosci 23: 1507–1521

    Google Scholar 

  • Opris I, Fuqua JL, Huettl P, Gerhardt GA, Berger TW, Hampson RE, Deadwyler SA (2012a) Closing the loop in primate prefrontal cortex: inter-laminar processing. Front Neural Circ 6:88. doi:10.3389/fncir.2012.00088

    Article  Google Scholar 

  • Opris I, Hampson RE, Gerhardt GA, Berger TW, Deadwyler SA (2012b) Columnar processing in primate pFC: evidence for executive control microcircuits. J Cogn Neurosci 24(12):2334–2347

    Google Scholar 

  • Opris I, Santos LM, Song D, Berger TW, Gerhardt GA, Hampson RE, Deadwyler SA (2013) Prefrontal cortical microcircuits bind perception to executive control. Sci Rep 3:2285. doi:10.1038/srep02285

    Article  Google Scholar 

  • Opris I, Fuqua JL, Gerhardt GA, Hampson RE, Deadwyler SA (2015a) Prefrontal cortical recordings with biomorphic MEAs reveal complex columnar-laminar microcircuits for BCI/BMI implementation. J Neurosci Methods 15(244):104–113

    Google Scholar 

  • Opris I, Gerhardt GA, Hampson RE, Deadwyler SA (2015b) Disruption of columnar and laminar cognitive processing in primate prefrontal cortex following cocaine exposure. Front Syst Neurosci 9:79. doi:10.3389/fnsys.2015.00079

    Article  CAS  Google Scholar 

  • Opris I, Popa IL, Casanova MF (2015c) Prefrontal cortical microcircuits of executive control. Chapter 10. In: Casanova MF, Opris I (eds) Recent advances on the modular organization of the cerebral cortex. Springer, Netherlands, pp 157–179

    Google Scholar 

  • Opris I, Santos LM, Gerhardt GA, Song D, Berger TW, Hampson RE, Deadwyler SA (2015d) Distributed encoding of spatial and object categories in primate hippocampal microcircuits. Front Neurosci 9:317. doi:10.3389/fnins.2015.00317

    Article  Google Scholar 

  • Orlovsky GN (1969a) Electrical activity in the brainstem and descending pathways in guided locomotion. Fiziol Zh (SSSR) 55:437–444

    Google Scholar 

  • Orlovsky GN (1969b) Spontaneous and induced locomotion of the thalamic cat. Biofizika 14:1095–1103

    Google Scholar 

  • Orlovsky GN (1970a) Connexions of the reticulo-spinal neurons with the “locomotor sections” of the brainstem. Biophysics 15:178–186

    Google Scholar 

  • Orlovsky GN (1970b) Work of the reticulo-spinal neurons during locomotion. Biophysics 15:761–771. 1970b

    Google Scholar 

  • Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Brain Res Rev 20(1):91–127

    CAS  Google Scholar 

  • Parker SM, Sinnamon HM (1983) Forward locomotion elicited by electrical stimulation in the diencephalon and mesencephalon of the awake rat. Physiol Behav 31:581–587

    CAS  Google Scholar 

  • Penfield W (1958) Centrencephalic integrating system. Brain 81(2):231–234

    CAS  Google Scholar 

  • Perel S, Sadtler PT, Oby ER, Ryu SI, Tyler-Kabara EC, Batista AP, Chase SM (2015) Single-unit activity, threshold crossings, and local field potentials in motor cortex differentially encode reach kinematics. J Neurophysiol 114(3):1500–1512

    Google Scholar 

  • Perreault M-C, Drew T, Rossignol S (1993) Activity of medullary reticulospinal neurons during fictive locomotion. J Neurophysiol 69:2232–2247

    CAS  Google Scholar 

  • Peterson BW, Anderson ME, Filion M (1974) Responses of ponto-medullary reticular neurons to cortical, tectal and cutaneous stimuli. Exp Brain Res 21:19–44

    CAS  Google Scholar 

  • Piallat B, Chabardès S, Torres N, Fraix V, Goetz L, Seigneuret E, Bardinet E, Ferraye M, Debu B, Krack P, Yelnik J, Pollak P, Benabid AL (2009) Gait is associated with an increase in tonic firing of the sub-cuneiform nucleus neurons. Neuroscience 158:1201–1205. doi:10.1016/j.neuroscience.2008.10.046

    Article  CAS  Google Scholar 

  • Quintana J, Fuster JM (1999) From perception to action: temporal integrative functions of prefrontal and parietal neurons. Cereb Cortex 9(3):213–221

    CAS  Google Scholar 

  • Raghanti MA, Spocter MA, Butti C, Hof PR, Sherwood CC (2010) A Comparative perspective on minicolumns and inhibitory GABAergic interneurons in the neocortex. Front Neuroanat 4:3

    Google Scholar 

  • Rakic P (1988) Specification of cerebral cortical areas. Science 241(4862):170–176

    CAS  Google Scholar 

  • Rao SC, Rainer G, Miller EK (1997) Integration of what and where in the primate prefrontal cortex. Science 276:821–824

    CAS  Google Scholar 

  • Rasmussen K, Morilak DA, Jacobs BL (1986) Single unit activity of locus ceruleus neurons in the freely moving cat: I. During naturalistic behaviors and in response to simple and complex stimuli. Brain Res 371:324–334

    CAS  Google Scholar 

  • Ratcliff R, Cherian A, Segraves M (2003) A comparison of macaque behavior and superior colliculus neuronal activity to predictions from models of two-choice decisions. J Neurophysiol 90(3):1392–1407

    Google Scholar 

  • Redgrave P, Gurney K (2006) The short-latency dopamine signal: a role in discovering novel actions? Nat Rev Neurosci 7:967–975

    CAS  Google Scholar 

  • Ridet JL, Rajaofetra N, Teilhac JR, Geffard M, Privat A (1993) Evidence for non-synaptic serotonergic and noradrenergic innervation of the rat dorsal horn and possible involvement of neuron-glia interactions. Neuroscience 52:143–157

    CAS  Google Scholar 

  • Rolland AS, Tandé D, Herrero MT, Luquin MR, Vazquez-Claverie M, Karachi C, Hirsch EC, François C (2009) Evidence for a dopaminergic innervation of the pedunculopontine nucleus in monkeys, and its drastic reduction after MPTP intoxication. J Neurochem 110:1321–1329

    CAS  Google Scholar 

  • Ross GS, Sinnamon HM (1984) Forelimb and hindlimb stepping by the anesthetized rat elicited by electrical stimulation of the pons and medulla. Physiol Behav 33:201–208

    CAS  Google Scholar 

  • Roseberry TK, Lee AM, Lalive AL, Wilbrecht L, Bonci A, Kreitzer AC (2016) Cell-type-specific control of brainstem locomotor circuits by basal ganglia. Cell 164:526–537

    CAS  Google Scholar 

  • Ryczko D, Dubuc R (2013) The multifunctional mesencephalic locomotor region. Curr Pharm Des 19:4448–4470

    CAS  Google Scholar 

  • Ryczko D, Dubuc R (2017) Dopamine and the brainstem locomotor networks: from lamprey to human. Front Neurosci 11:296. doi:10.3389/fnins.2017.00295

    Article  Google Scholar 

  • Ryczko D, Cone JJ, Alpert MH, Goetz L, Auclair F, Dube C, Parent M, Roitman MF, Alford S, Dubuc R (2016) A descending dopamine pathway conserved from basal vertebrates to mammals. Proc Natl Acad Sci 113(2016):E2440–E2449

    CAS  Google Scholar 

  • Sahibzada N, Dean P, Redgrave P (1986) Movements resembling orientation or avoidance elicited by electrical stimulation of the superior colliculus in rats. J Neurosci 6:723–733

    CAS  Google Scholar 

  • Schmidt BJ, Jordan LM (2000) The role of serotonin in reflex modulation and locomotor rhythm production in the mammalian spinal cord. Brain Res 53:689–710

    CAS  Google Scholar 

  • Serradj N, Paixão S, Sobocki T, Feinberg M, Klein R, Kullander K, Martin JH (2014) EphA4-mediated ipsilateral corticospinal tract misprojections are necessary for bilateral voluntary movements but not bilateral stereotypic locomotion. J Neurosci 34:5211–5221

    Google Scholar 

  • Shefchyk SJ, Jordan LM (1985) Excitatory and inhibitory postsynaptic potentials in alpha motoneurons produced during fictive locomotion by stimulation of the mesencephalic locomotor region. J Neurophysiol 53:1345–1355. 1985a

    CAS  Google Scholar 

  • Shepherd G, Grillner S (2010) Handbook of brain microcircuits. Oxford University Press, New York. 2010

    Google Scholar 

  • Sherman DF, Fuller PM, Marcus J, Yu J, Zhang P, Chamberlin NL, Saper CB, Lu J (2015) Anatomical location of the mesencephalic locomotor region and its possible role in locomotion, posture, cataplexy, and Parkinsonism. Front Neurol 6:140. doi:10.3389/fneur.2015.00140

    Article  Google Scholar 

  • Shik ML, Severin FV, Orlovskii GN (1966) Control of walking and running by means of electric stimulation of the midbrain. Biofizika 11:659–666

    CAS  Google Scholar 

  • Shik ML, Severin FV, Orlovsky GN (1967) Structures of the brain stem responsible for evoked locomotion. Fiziol Zh SSSR 53:1125–1132

    CAS  Google Scholar 

  • Shik ML, Orlovsky GN, Severin FV (1968) Locomotion of the mesencephalic cat evoked by pyramidal stimulation. Biophysics 13:127–135

    CAS  Google Scholar 

  • Shimamura M, Edgerton VR, Kogure I (1987) Application of autoradiographic analysis of 2-deoxyglucose in the study of locomotion. J Neurosci Methods 21:303–310

    CAS  Google Scholar 

  • Sinnamon HM (1984) Forelimb and hindlimb stepping by the anesthetized rat elicited by electrical stimulation in the diencephalon and mesencephalon. Physiol Behav 33:191–201

    CAS  Google Scholar 

  • Sinnamon HM (1993) Preoptic and hypothalamic neurons and the initiation of locomotion in the anesthetized rat. Prog Neurobiol 41:323–344

    CAS  Google Scholar 

  • Skagerberg G, Lindvall O (1985) Organization of diencephalic dopamine neurones projecting to the spinal cord in the rat. Brain Res 342:340–351

    CAS  Google Scholar 

  • Sławińska U, Kasicki S (1995) Theta-like rhythm in depth EEG activity of hypothalamic areas during spontaneous or electrically induced locomotion in the rat. Brain Res 678:117–126

    Google Scholar 

  • Sławińska U, S (1998) The frequency of rat’s hippocampal theta rhythm is related to the speed of locomotion. Brain Res 796:327–331

    Google Scholar 

  • Steeves JD, Jordan LM (1980) Localization of a descending pathway in the spinal cord which is necessary for controlled treadmill locomotion. Neurosci Lett 20:283–288

    CAS  Google Scholar 

  • Steeves JD, Jordan LM (1984) Autoradiographic demonstration of the projections from the mesencephalic locomotor region. Brain Res 307:263–276

    CAS  Google Scholar 

  • Stefani A, Lozano AM, Peppe A, Stanzione P, Galati S, Tropepi D, Pierantozzi M, Brusa L, Scarnati E, Mazzone P (2007) Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain 130:1596–1607

    Google Scholar 

  • Sukikara MH, Mota-Ortiz SR, Baldo MV, Felício LF, Canteras NS (2006) A role for the periaqueductal gray in switching adaptive behavioral responses. J Neurosci 26:2583–2589

    CAS  Google Scholar 

  • Suzuki M, Miyai I, Ono T, Oda I, Konishi I, Kochiyama T, Kubota K (2004) Prefrontal and premotor cortices are involved in adapting walking and running speed on the treadmill: an optical imaging study. NeuroImage 23:1020–1026

    Google Scholar 

  • Swadlow HA, Gusev AG, Bezdudnaya T (2002) Activation of a cortical column by a thalamocortical impulse. J Neurosci. 2002 Sep 1 22(17):7766–7773

    CAS  Google Scholar 

  • Swanson LW, Mogenson GJ (1981) Neural mechanisms for the functional coupling of autonomic, endocrine and somatomotor responses in adaptive behavior. Brain Res 228:1–34

    CAS  Google Scholar 

  • Szentágothai J, Arbib MA (1975) Conceptual models of neural organization. MIT Press, Cambridge, MA

    Google Scholar 

  • Szokol K, Glover JC, Perreault M-C (2008) Differential origin of reticulospinal drive to motoneurons innervating trunk and hindlimb muscles in the mouse revealed by optical recording. J Physiol Lond 586(21):5259–5276

    CAS  Google Scholar 

  • Takakusaki K (2008) Forebrain control of locomotor behaviors. Brain Res Rev 57:192–198. doi:10.1016/j.brainresrev.2007.06.024

    Article  Google Scholar 

  • Takakusaki K (2013) Neurophysiology of gait: from the spinal cord to the frontal lobe. Mov Disord 28:1483–1491. doi:10.1002/mds.25669

    Article  Google Scholar 

  • Takakusaki K (2017) Functional neuroanatomy for posture and gait control. J Mov Disord 10:1–17

    Google Scholar 

  • Takakusaki K, Habaguchi T, Ohtinata-Sugimoto J, Saitoh K, Sakamoto T (2003) Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: a new concept for understanding motor disorders in basal ganglia dysfunction. Neuroscience 119:293–308

    CAS  Google Scholar 

  • Takakusaki K, Takahashi K, Saitoh K, Harada H, Okumura T, Kayama Y, Koyama Y (2005) Orexinergic projections to the cat midbrain mediate alternation of emotional behavioural states from locomotion to cataplexy. J Physiol Lond 568:1003–1020. doi:10.1113/jphysiol.2005.085829

    Article  CAS  Google Scholar 

  • Takakusaki K, Obara K, Nozu T, Okumura T (2011) Modulatory effects of the GABAergic basal ganglia neurons on the PPN and the muscle tone inhibitory system in cats. Arch Ital Biol 149:385–405

    CAS  Google Scholar 

  • Takakusaki K, Chiba R, Nozu T, Okumura T (2016) Brainstem control of locomotion and muscle tone with special reference to the role of the mesopontine tegmentum and medullary reticulospinal systems. J Neural Transm (Vienna) 123:695–729. doi:10.1007/s00702-015-1475-4

    Article  Google Scholar 

  • Takeuchi D, Hirabayashi T, Tamura K, Miyashita Y (2011) Reversal of interlaminar signal between sensory and memory processing in monkey temporal cortex. Science 331:1443–1447

    CAS  Google Scholar 

  • Thankachan S, Fuller PM, Lu J (2012) Movement- and behavioral state-dependent activity of pontine reticulospinal neurons. Neuroscience 221:125–139

    CAS  Google Scholar 

  • Tohyama M, Sakai K, Salvert D, Touret M, Jouvet M (1979) Spinal projections from the lower brain stem in the cat as demonstrated by the horseradish peroxidase technique. I. Origins of the reticulospinal tracts and their funicular trajectories. Brain Res 173:383–403

    CAS  Google Scholar 

  • Tovote P, Esposito MS, Botta P, Chaudun F, Fadok JP, Markovic M, Wolff SBE, Ramakrishnan C, Fenno L, Deisseroth K, Herry C, Arber S, Lüthi A (2016) Midbrain circuits for defensive behaviour. Nature 534:206–212

    CAS  Google Scholar 

  • Veasey SC, Fornal CA, Metzler CW, Jacobs BL (1995) Response of serotonergic caudal raphe neurons in relation to specific motor activities in freely moving cats. J Neurosci 15:5346–5359

    CAS  Google Scholar 

  • Viala D, Buser P (1969) The effects of DOPA and 5-HTP on rhythmic efferent discharges in hind limb nerves in the rabbit. Brain Res 12:437–443

    CAS  Google Scholar 

  • Vianna DM, Borelli KG, Ferreira-Netto C, Macedo CE, Brandao ML (2003) Fos-like immunoreactive neurons following electrical stimulation of the dorsal periaqueductal gray at freezing and escape thresholds. Brain Res Bull 62:179–189

    CAS  Google Scholar 

  • Wang X-J (2002) Probabilistic decision making by slow reverberation in cortical circuits. Neuron 36:955–968

    CAS  Google Scholar 

  • Wang XJ (2012) Neural dynamics and circuit mechanisms of decision-making. Curr Opin Neurobiol 22:1039–1046

    Google Scholar 

  • Wang L, Chen IZ, Lin D (2015) Collateral pathways from the ventromedial hypothalamus mediate defensive behaviors. Neuron 85:1344–1358

    CAS  Google Scholar 

  • Watson TC, Cerminara NL, Lumb BM, Apps R (2016) Neural correlates of fear in the periaqueductal gray. J Neurosci 36:12707–12719

    CAS  Google Scholar 

  • Weiler N, Wood L, Yu J, Solla SA, Shepherd GM (2008) Top-down laminar organization of the excitatory network in motor cortex. Nat Neurosci 11(3):360–366. doi:10.1038/nn2049

    Article  CAS  Google Scholar 

  • Weinberger M, Hamani C, Hutchison WD, Moro E, Lozano AM, Dostrovsky JO (2008) Pedunculopontine nucleus microelectrode recordings in movement disorder patients. Exp Brain Res 188:165–174

    Google Scholar 

  • Wilson FA, Scalaidhe SP, Goldman-Rakic PS (1993) Dissociation of object and spatial processing domains in primate prefrontal cortex. Science 260(5116):1955–1958

    CAS  Google Scholar 

  • Winn P (2006) How best to consider the structure and function of the pedunculopontine tegmental nucleus: evidence from animal studies. J Neurol Sci 248:234–250. doi:10.1016/j.jns.2006.05.036

    Article  Google Scholar 

  • Wise SP, Murray EA, Gerfen CR (1996) The frontal cortex-basal ganglia system in primates. Crit Rev Neurobiol 10:317–356

    CAS  Google Scholar 

  • Yakovleff A, Roby-Brami A, Guezard B, Mansour H, Bussel B, Privat A (1989) Locomotion in rats transplanted with noradrenergic neurons. Brain Res Bull 22:115–121

    CAS  Google Scholar 

  • Yakovleff A, Cabelguen JM, Orsal D, Gimenez y Ribotta M, Rajaofetra N, Drian MJ, Bussel B, Privat A (1995) Fictive motor activities in adult chronic spinal rats transplanted with embryonic brainstem neurons. Exp Brain Res 106:69–78

    CAS  Google Scholar 

  • York GK 3rd, Steinberg DA (2011) Hughlings Jackson’s neurological ideas. Brain 134(10):3106–3113. doi:10.1093/brain/awr219

    Article  Google Scholar 

  • Zhou M, Liang F, Xiong XR, Li L, Li H, Xiao Z, Tao HW, Zhang LI (2014) Scaling down of balanced excitation and inhibition by active behavioral states in auditory cortex. Nat Neurosci 17:841–850

    CAS  Google Scholar 

  • Zweig RM, Jankel WR, Hedreen JC, Mayeux R, Price DL (1989) The pedunculopontine nucleus in Parkinson’s disease. Ann Neurol 26:41–46

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian R. Noga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Noga, B.R., Opris, I. (2017). The Hierarchical Circuit for Executive Control of Movement. In: Opris, I., Casanova, M.F. (eds) The Physics of the Mind and Brain Disorders. Springer Series in Cognitive and Neural Systems, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-29674-6_5

Download citation

Publish with us

Policies and ethics