Skip to main content

Mind the Reward: Nutrition vs. Addiction

  • Chapter
  • First Online:
The Physics of the Mind and Brain Disorders

Abstract

Nutrition and reward are two important functions of the brain. To understand their underpinnings we look into the neural processing underlying the mechanisms of reward and nutrition at the interface with cognition. The common denominator of nutrition and reward functions is “food” intake that represents the energy source for all vital functions of an organism. In this chapter, we briefly discuss these two neural systems involving the sensory encoding of taste, the digestive system for nutrition, the reward mechanisms for food and drug addiction, together with its implications on cognition, as well as the neural substrate of human obesity and addiction. Finally, we touch on the idea that some nutrients and rewards require attention in order to prevent obesity and addiction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott SM, Arnold JM, Chang Q, Miao H, Ota N, Cecala C, Gold PE, Sweedler JV, Gillette MU (2013) Signals from the brainstem sleep/wake centers regulate behavioral timing via the circadian clock. PLoS One 8(8):e70481. doi:10.1371/journal.pone.0070481

    Article  CAS  Google Scholar 

  • Anderson SM, Famous KR, Sadri-Vakili G, Kumaresan V, Schmidt HD, Bass CE (2008) CaMKII: a biochemical bridge linking accumbens dopamine and glutamate systems in cocaine seeking. Nat Neurosci 11:344–353

    CAS  Google Scholar 

  • Banks WA (2008) The Blood-brain barrier: connecting the gut and the brain. Regul Pept 149 (1–3):11–14. doi:10.1016/j.regpep.2007.08.027

    Article  CAS  Google Scholar 

  • Banks WA (2012) Role of the blood-brain barrier in the evolution of feeding and cognition. Issue: the brain and obesity. Ann N Y Acad Sci 1264:13–19. doi:10.1111/j.1749-6632.2012.06568.x

    Article  CAS  Google Scholar 

  • Bradberry CW (2000) Acute and chronic dopamine dynamics in a nonhuman primate model of recreational cocaine use. J Neurosci 20:7109–7115

    CAS  Google Scholar 

  • Burns LH, Robbins TW, Everitt BJ (1993) Differential effects of excitotoxic lesions of the basolateral amygdala, ventral subiculum and medial prefrontal cortex on responding with conditioned reinforcement and locomotor activity potentiated by intra-accumbens infusions of D-amphetamine. Behav Brain Res 55:167–183

    CAS  Google Scholar 

  • Bush G, Brent A, Vogt BA, Holmes J, Dale AM, Greve D, Jenike MA, Rosen BR (2002) Dorsal anterior cingulate cortex: a role in reward-based decision making. PNAS 99(1):523–528

    CAS  Google Scholar 

  • Cador M, Robbins TW, Everitt BJ (1989) Involvement of the amygdala in stimulus-reward associations: interaction with the ventral striatum. Neuroscience 30(1):77–86

    CAS  Google Scholar 

  • Candeias EM, Sebastião IC, Cardoso SM, Correia SC, Carvalho CI, Plácido AI, Santos MS, Oliveira CR, Moreira PI, Duarte AI (2015) Gut-brain connection: the neuroprotective effects of the anti-diabetic drug liraglutide. World J Diabetes 6(6):807–827. https://doi.org/10.4239/wjd.v6.i6.807

    Article  Google Scholar 

  • Chandrashekar J, Hoon MA, Ryba NJP, Zuker CS (2006) The receptors and cells for mammalian taste. Nature 444:288–294

    CAS  Google Scholar 

  • Chen Y, Liu L (2012) Modern methods for delivery of drugs across the blood–brain barrier. Adv Drug Deliv Rev 64(7):640–665. http://dx.doi.org/10.1016/j.addr.2011.11.010

    CAS  Google Scholar 

  • Clark SM, Saules KK (2013) Validation of the Yale food addiction scale among a weight-loss surgery population. Eat Behav 14(2):216–219. https://doi.org/10.1016/j.eatbeh.2013.01.002

    Article  Google Scholar 

  • Davis C, Curtis C, Levitan RD, Carter JC, Kaplan AS, Kennedy JL (2011) Evidence that ‘food addiction’ is a valid phenotype of obesity. Appetite 57:711–717

    Google Scholar 

  • De Araujo IE, Ferreira JG, Tellez LA, Ren X, Yeckel CW (2012) The gut-brain dopamine axis: a regulatory system for caloric intake. Physiol Behav 106(3):394–399

    Google Scholar 

  • Deadwyler SA, Porrino L, Siegel JM, Hampson RE (2007) Systemic and nasal delivery of orexin-A (Hypocretin-1) reduces the effects of sleep deprivation on cognitive performance in nonhuman primates. J Neurosci 27:14239–14247

    CAS  Google Scholar 

  • Deadwyler SA (2010) Electrophysiological correlates of abused drugs: relation to natural rewards. Ann N Y Acad Sci 1187:140–147

    CAS  Google Scholar 

  • Delgado MR, Locke HM, Stenger VA, Fiez JA (2003) Dorsal striatum responses to reward and punishment: effects of valence and magnitude manipulations. Cogn Affect Behav Neurosci 3:127–138

    Google Scholar 

  • Di Lorenzo PM (2000) The neural code for taste in the brain stem: response profiles. Physiol Behav 69:87–96

    Google Scholar 

  • Erickson RP, Covey E, Doetsch G (1980) Neuron and stimulus typologies in the rat gustatory system. Brain Res 196:513–519

    CAS  Google Scholar 

  • Erickson RP (2000) The evolution of neural coding ideas in the chemical senses. Physiol Behav 69:3–13

    CAS  Google Scholar 

  • Everitt BJ, Parkinson JA, Olmstead MC, Arroyo M, Robledo P, Robbins TW (1999) Associative processes in addiction and reward. The role of amygdala-ventral striatal subsystems. Ann N Y Acad Sci 877:412–438

    CAS  Google Scholar 

  • Everitt BJ, Wolf ME (2002) Psychomotor stimulant addiction: a neural systems perspective. J. Neurosci 22:3312–3320

    CAS  Google Scholar 

  • Floresco SB, Blaha CD, Yang CR, Phillips AG (2001) Modulation of hippocampal and amygdalar-evoked activity of nucleus accumbens neurons by dopamine: cellular mechanisms of input select. J Neurosci 21(8):2851–2860

    CAS  Google Scholar 

  • Furness JB (2012) The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol 9:286–294

    CAS  Google Scholar 

  • Gearhardt AN, Corbin WR, Brownell KD (2009) Preliminary validation of the Yale food addiction scale. Appetite 52:430–436

    Google Scholar 

  • Gearhardt AN et al (2011) Neural correlates of food addiction. Arch Gen Psychiatry 7(5):321–329

    Google Scholar 

  • Gearhardt AN, White MA, Masheb RM, Morgan PT, Crosby RD, Grilo CM (2012) An examination of the food addiction construct in obese patients with binge eating disorder. Int J Eat Disord 45:657–663

    Google Scholar 

  • Gearhardt AN, Corbin WR, Brownell KD (2016) Development of the Yale food addiction scale version 2.0. Psychol Addict Behav 30(1):113–121. https://doi.org/10.1037/adb0000136

    Article  Google Scholar 

  • Gershon MD (1998) The second brain. Harper Collins, New York

    Google Scholar 

  • Gershon MD, Erde SM (1981) The nervous system of the gut. Gastroenterology 80(6):1571–1594

    CAS  Google Scholar 

  • Goldman-Rakic PS (1996) The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive. Philos Trans R Soc Lond Ser B Biol Sci 351(1346):1445–1453

    CAS  Google Scholar 

  • Graybiel AM (2008) Habits, rituals, and the evaluative brain. Annu Rev Neurosci 31:359–388. doi:10.1146/annurev.neuro.29.051605.112851

    Article  CAS  Google Scholar 

  • Haber SN, Knutson B (2010) The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacol 35(1):4–26. https://doi.org/10.1038/npp.2009.129

    Article  Google Scholar 

  • Hampson RE, Porrino LJ, Opris I, Stanford T, Deadwyler SA (2011) Effects of cocaine rewards on neural representations of cognitive demand in nonhuman primates. Psychopharmacology (Berlin) 213:105–118

    CAS  Google Scholar 

  • Hjorth E, Zhu M, Toro VC, Vedin I, Palmblad J, Cederholm T, Freund-Levi Y, Faxen-Irving G, Wahlund LO, Basun H, Eriksdotter M, Schultzberg M (2013) Omega-3 fatty acids enhance phagocytosis of Alzheimer's disease-related amyloid-β42 by human microglia and decrease inflammatory markers. J Alzheimers Dis 35(4):697–713. doi:10.3233/JAD-130131

    Article  CAS  Google Scholar 

  • Huang AL et al (2006) The cells and logic for mammalian sour detection keys. Nature 442: 934–938

    CAS  Google Scholar 

  • Imfeld P, Bodmer M, Schuerch M, Jick SS, Meier CR (2013) Risk of incident stroke in patients with Alzheimer disease or vascular dementia. Neurology 81(10):910–919. doi:10.1212/WNL.0b013e3182a35151

    Article  Google Scholar 

  • Johnstone C, Hendry C, Farley A, McLafferty E (2014) The digestive system: part 1. Nurs Stand 28(24):37–45. doi:10.7748/ns2014.02.28.24.37.e7395

    Article  Google Scholar 

  • Kaas JH (1989) The evolution of complex sensory systems in mammals. J Exp Biol 146:165–176

    CAS  Google Scholar 

  • Kalivas PW, Nakamura M (1999) Neural systems for behavioral activation and reward. Curr Opin Neurobiol 9:223–227

    CAS  Google Scholar 

  • Katz DB, Simon SA, Nicolelis MA (2001) Dynamic and multimodal responses of gustatory cortical neurons in awake rats. J Neurosci 21:4478–4489

    CAS  Google Scholar 

  • Khlaifia A, Matias I, Cota D, Tell F (2017) Nutritional status-dependent endocannabinoid signalling regulates the integration of rat visceral information. J Physiol. doi:10.1113/JP273484

  • Kuehn E, Mueller K, Lohmann G, Schuetz-Bosbach S (2016) Interoceptive awareness changes the posterior insula functional connectivity profile. Brain Struct Funct 221(3):1555–1571. doi:10.1007/s00429-015-0989-8

    Article  Google Scholar 

  • Lundy RF (2008) Gustatory hedonic value: potential function for forebrain control of brainstem taste processing. Neurosci Biobehav Rev 32(8):1601–1606

    Google Scholar 

  • McFarland NR, Haber SN (2002) Thalamic relay nuclei of the basal ganglia form both reciprocal and nonreciprocal cortical connections, linking multiple frontal cortical areas. J Neurosci 22:8117–8132

    CAS  Google Scholar 

  • McGeer PL, McGeer EG (2013) The amyloid cascade-inflammatory hypothesis of Alzheimer disease: implications for therapy. Acta Neuropathol 126(4):479–497. doi:10.1007/s00401-013-1177-7

    Article  CAS  Google Scholar 

  • Meule A, Heckel D, Kübler A (2012) Factor structure and item analysis of the Yale food addiction scale in obese candidates for bariatric surgery. Eur Eat Disord Rev 20(5):419–422. doi:10.1002/erv.2189

    Article  Google Scholar 

  • Morton GJ, Meek TH, Schwartz MW (2014) Neurobiology of food intake in health and disease. Nat Rev Neurosci 15(6):367–378

    CAS  Google Scholar 

  • Mountcastle VB (1997) The columnar organization of the neocortex. Brain 120(4):701–722

    Google Scholar 

  • Nelson G et al (2001) Mammalian sweet receptors keys. Cell 106:381–390

    CAS  Google Scholar 

  • O’Donnell P, Grace AA (1996) Dopaminergic reduction of excitability in nucleus accumbens neurons recorded in vitro. Neuropsychopharmacology 15:87–97

    Google Scholar 

  • Opris I, Bruce CJ (2005) Neural circuitry of judgment and decision mechanisms. Brain Res Rev 48:509–528

    Google Scholar 

  • Opris I, Hampson RE, Deadwyler SA (2009) The encoding of cocaine vs. natural rewards in the striatum of nonhuman primates: categories with different activations. Neuroscience 163(1):40–54

    CAS  Google Scholar 

  • Opris I, Casanova MF (2014) Prefrontal cortical minicolumn: from executive control to disrupted cognitive processing. Brain 137(7):1863–1875. doi:10.1093/brain/awt359

    Article  Google Scholar 

  • Opris I. Popa IL, Casanova MF (2015a) Prefrontal cortical microcircuits of executive control. Chapter 10. In Casanova MF, Opris I (ed) “Recent advances on the modular organization of the cerebral cortex”, Springer, Dordrecht. pp 157–179

    Google Scholar 

  • Opris I, Hampson RE, Stanford TR, Gerhardt GA, Deadwyler SA (2011) Neural activity in frontal cortical cell layers: evidence for columnar sensorimotor processing. J Cogn Neurosci 23:1507–1521

    Google Scholar 

  • Opris I., Hampson R. E., Gerhardt G. A., Berger T. W., Deadwyler S. A. (2012) Columnar processing in primate pFC: evidence for executive control microcircuits, J Cogn Neurosci. 24 (12): 2334-2347

    Google Scholar 

  • Opris I, Santos LM, Song D, Berger TW, Gerhardt GA, Hampson RE, Deadwyler SA (2013) Prefrontal cortical microcircuits bind perception to executive control. Sci Rep 3:2285. doi:10.1038/srep02285

    Article  Google Scholar 

  • Opris I, Santos LM, Gerhardt GA, Song D, Berger TW, Hampson RE, Deadwyler SA (2015b) Distributed encoding of spatial and object categories in primate hippocampal microcircuits. Front Neurosci 9:317. doi:10.3389/fnins.2015.00317

    Article  Google Scholar 

  • Opris I, Fuqua JL, Gerhardt GA, Hampson RE, Deadwyler SA (2015c) Prefrontal cortical recordings with biomorphic MEAs reveal complex columnar-laminar microcircuits for BCI/BMI implementation. J Neurosci Methods 15(244):104–113

    Google Scholar 

  • Opris I, Gerhardt GA, Hampson RE, Deadwyler SA (2015d) Disruption of columnar and laminar cognitive processing in primate prefrontal cortex following cocaine exposure. Front Syst Neurosci 9:79. doi:10.3389/fnsys.2015.00079

    Article  CAS  Google Scholar 

  • Opris I (2013) Inter-laminar microcircuits across the neocortex: repair and augmentation. Front Syst Neurosci 7:80. doi:10.3389/fnsys.2013.00080

    Article  Google Scholar 

  • Pears A, Parkinson JA, Hopewell L, Everitt BJ, Roberts AC (2003) Lesions of the orbitofrontal but not medial prefrontal cortex disrupt conditioned reinforcement in primates. J Neurosci 23(35):11189–11201

    CAS  Google Scholar 

  • Rao SG, Williams GV, Goldman-Rakic PS (1999) Isodirectional tuning of adjacent interneurons and pyramidal cells during working memory: evidence for microcolumnar organization in pFC. J Neurophysiol 81:1903–1916

    CAS  Google Scholar 

  • Pedram P, Wadden D, Amini P, Gulliver W, Randell E, Cahill F, Vasdev S, Goodridge A, Carter JC, Zhai G, Ji Y, Sun G (2013) Food addiction: its prevalence and significant association with obesity in the general population. PLoS One 8(9):e74832. https://doi.org/10.1371/journal.pone.0074832. eCollection 2013

    Article  CAS  Google Scholar 

  • Pellerin L (2010) Food for thought: the importance of glucose and other energy substrates for sustaining brain function under varying levels of activity. Diabetes Metab 36(Suppl 3): S59–S63. doi:10.1016/S1262-3636(10)70469-9

    Article  CAS  Google Scholar 

  • Rao M and Gershon MD (2016) The bowel and beyond: the enteric nervous system in neurological disorders. Nat Rev Gastroenterol Hepatol. 13(9): 517–528. doi:10.1038/nrgastro.2016.107.

  • Richard JM, Castro DC, Difeliceantonio AG, Robinson MJ, Berridge KC (2013) Mapping brain circuits of reward and motivation: in the footsteps of Ann Kelley. Neurosci Biobehav Rev 37(9 Pt A):1919-31. doi:10.1016/j.neubiorev.2012.12.008

  • Robbins TW, Arnsten AF (2009) The neuropsychopharmacology of fronto-executive function: monoaminergic modulation. Annu Rev Neurosci 32:267–287

    CAS  Google Scholar 

  • Rolls ET (2000) The orbitofrontal cortex and reward. Cereb Cortex 10:284–294

    CAS  Google Scholar 

  • Rolls ET (2005) Taste, olfactory, and food texture processing in the brain, and the control of food intake. Physiol Behav 85(1):45–56

    CAS  Google Scholar 

  • Rolls ET (2016) Reward Systems in the Brain and Nutrition. Annu Rev Nutr 36:435-70 Shallice and Burgess, 1991

    Google Scholar 

  • Schultz W (2000) Multiple reward signals in the brain. Nat Rev Neurosci 1:199–2007

    CAS  Google Scholar 

  • Smith DV, St. John SJ (1999) Neural coding of gustatory information. Curr Opin Neurobiol 9: 427–435

    CAS  Google Scholar 

  • Smith DV, John SJ, Boughter JD (2000) Neuronal cell types and quality coding key. Physiol Behav 69:77–85

    CAS  Google Scholar 

  • Stice E, Spoor S, Bohon C, Small DM (2008) Relation between obesity and blunted striatal response to food is moderated by TaqIA A1 allele. Science 332:449–452

    Google Scholar 

  • Stuber GD, Roitman MF, Phillips PE, Carelli RM, Wightman RM (2005) Rapid dopamine signaling in the nucleus accumbens during contingent and noncontingent cocaine administration. Neuropsychopharmacology 30:853–863

    CAS  Google Scholar 

  • Takakura AC, Moreira TS, De Paula PM, Menani JV, Colombari E (2013) Control of breathing and blood pressure by parafacial neurons in conscious rats. Exp Physiol 98(1):304–315. doi:10.1113/expphysiol.2012.065128

    Article  Google Scholar 

  • Tellez LA, Han W, Zhang X, Ferreira TL, Perez IO, Shammah-Lagnado SJ, van den Pol AN, de Araujo IE (2016) Separate circuitries encode the hedonic and nutritional values of sugar. Nat Neurosci 19:465–470. doi:10.1038/nn.4224

    Article  CAS  Google Scholar 

  • Thomas J, Thomas CJ, Radcliffe J, Itsiopoulos C (2015) Omega-3 fatty acids in early prevention of inflammatory neurodegenerative disease: a focus on Alzheimer's disease. Biomed Res Int 2015:172801. doi:10.1155/2015/172801

    Article  CAS  Google Scholar 

  • Tremblay L, Schultz W (1999) Relative reward preference in primate orbitofrontal cortex. Nature 398:704–708

    CAS  Google Scholar 

  • Vidu R, Rahman M, Mahmoudi M, Enăchescu M, Potecă TD, Opris I (2014) Nanostructures: a platform for brain repair and augmentation. Front Syst Neurosci 8:91

    Google Scholar 

  • Volkow ND, Wang GJ, Fowler JS et al (2002) “Nonhedonic” food motivation in humans involves dopamine in the dorsal striatum and methylphenidate amplifies this effect. Synapse 44(3): 175–180

    CAS  Google Scholar 

  • Volkow ND, Wise RA (2005) How can drug addiction help us to understand obesity? Nat Neurosci 8(5):555–560

    CAS  Google Scholar 

  • Volkow ND, Wang GJ, Ma Y, Fowler JS, Wong C, Ding YS (2005) Activation of orbital and medial prefrontal cortex by methylphenidate in cocaine-addicted subjects but not in controls: relevance to addiction. J Neurosci 25:3932–3939

    CAS  Google Scholar 

  • Volkow ND, Wang GJ, Telang F, Fowler JS, Thanos PK, Logan J, Alexoff D, Ding YS, Wong C, Ma Y, Pradhan K (2008a) Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors. NeuroImage 42(4):1537–1543. https://doi.org/10.1016/j.neuroimage.2008.06.002

    Article  Google Scholar 

  • Volkow ND, Wang GJ, Fowler JS, Telang F (2008b) Overlapping neuronal circuits in addiction and obesity: evidence of systems pathology. Philos Trans R Soc Lond Ser B Biol Sci 363(1507):3191–3200. https://doi.org/10.1098/rstb.2008.0107

    Article  Google Scholar 

  • Volkow ND, Wang GJ, Fowler JS, Tomasi D, Baler R (2011) Food and drug reward: overlapping circuits in human obesity and addiction. Curr Top Behav Neurosci 11:1–24. https://doi.org/10.1007/7854_2011_169

    Article  Google Scholar 

  • Volkow ND, Tomasi D, Wang GJ, Studentsova Y, Margus B, Crawford TO (2014) Brain glucose metabolism in adults with ataxia-telangiectasia and their asymptomatic relatives. Brain 137(6):1753–1761. https://doi.org/10.1093/brain/awu092

    Article  Google Scholar 

  • von Ranson KM, Russell-Mayhew SK, Masson PC (2011) An exploratory study of eating disorder psychopathology among overeaters anonymous members. Eat Weight Disord 16(1):e65–e68

    Google Scholar 

  • Wang G-J, Volkow ND, Freimuth P et al (2001) Brain dopamine and obesity. Lancet 357:354–357

    CAS  Google Scholar 

  • Wang GJ, Volkow ND, Fowler JS (2002) The role of dopamine in motivation for food in humans: implications for obesity. Expert Opin Ther Targets 6(5):601–609

    CAS  Google Scholar 

  • Wang L, Benzinger TL, Hassenstab J, Blazey T, Owen C, Liu J, Fagan AM, Morris JC, Ances BM (2015) Spatially distinct atrophy is linked to β-amyloid and tau in preclinical Alzheimer disease. Neurology 84(12):1254–1260. doi:10.1212/WNL.0000000000001401

    Article  CAS  Google Scholar 

  • Wise RA (2002) Brain reward circuitry: insights from unsensed incentives. Neuron 36(2):229–240

    CAS  Google Scholar 

  • Yeomans MR, Gray RW (2002) Opioid peptides and the control of human ingestive behaviour. Neurosci Biobehav Rev 26:713–728

    CAS  Google Scholar 

  • Yildiz D, Büyükkoyuncu PN, Kiliç AK, Tolgay EN, Tufan F (2015) Malnutrition is associated with dementia severity and geriatric syndromes in patients with Alzheimer disease. Turk J Med Sci 45(5):1078–1081

    CAS  Google Scholar 

  • Zampini M, Spence C (2012) Assessing the role of visual and auditory cues in multisensory perception of flavor. In: Murray MM, Wallace MT (eds) The neural bases of multisensory processes. CRC Press/Taylor & Francis, Boca Raton (FL). Chapter 37

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioan Opris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sonea, C., Opris, AL., Casanova, M.F., Opris, I., Constantinescu, M.V. (2017). Mind the Reward: Nutrition vs. Addiction. In: Opris, I., Casanova, M.F. (eds) The Physics of the Mind and Brain Disorders. Springer Series in Cognitive and Neural Systems, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-29674-6_21

Download citation

Publish with us

Policies and ethics