Skip to main content

What Makes the Human Brain Special: Key Features of Brain and Neocortex

  • Chapter
  • First Online:
The Physics of the Mind and Brain Disorders

Part of the book series: Springer Series in Cognitive and Neural Systems ((SSCNS,volume 11))

Abstract

Humans have the largest brain of any primate. While it seems logical to assume that overall size is very important for generating complex behaviours, brain size relative to body size has been considered to be a major factor in predicting overall brain capacity. It turns out, however, that the absolute number of neurons in the cerebral cortex, regardless of body mass, may be a more relevant factor. Here we review the ways in which brains have increased in size, why absolute brain size is sometimes important, and why the size of the human brain allowed us to have cognitive abilities that exceed those of other primates. We suggest that cognitive functions are largely mediated by the neocortex, and because the human brain scales like a typical primate brain, the large neocortex of humans contains more neurons than any other mammal, even those with larger brains such as elephants. Further, as neurons in primary sensory cortex increase in numbers with brain size at a greater rate than the increase in the number of neurons in thalamic relay nuclei, primates with larger brains and more neocortex also have more neurons to analyze these sensory inputs. As numbers of neurons increase, individual neurons are free to specialize in different ways, generating increasing variability in cell size, shape, dendritic arborization and other features. In addition, an expanded cortical sheet contains more cortical areas, thereby increasing the number of computational levels involved in information processing, decision-making, and information storage. Having more cortical areas allows any given area to become more specialized in terms of laminar and sub-laminar organization, modular organization, connectivity and function. Increases in cortical field number also allow for greater variation in the sizes of areas, and thereby different types of functional specializations. Finally, large brains have more areas that are removed from primary sensory inputs and capable of hemispheric specialization. Of course, the costs of a large brain are considerable in terms of gestation time, postnatal vulnerability, and metabolic costs. Thus, it is not surprising that most mammals have relatively small brains that are constrained in their processing capacity, but are more metabolically efficient, and mature rapidly allowing for early reproduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allman J, McLaughlin T, Hakeem A (1993) Brain weight and life-span in primate species. Proc Natl Acad Sci U S A 90:118–122

    CAS  Google Scholar 

  • Allman JM, Watson KK, Tetreault NA, Hakeem AY (2005) Intuition and autism: a possible role for Von Economo neurons. Trends Cogn Sci 9:367–373

    Google Scholar 

  • Azevedo FAC, Carvalho LRB, Grinberg LT, Farfel JM, Ferretti REL, Leite REP, Jacob Filho W, Lent R, Herculano-Houzel S (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513:532–541

    Google Scholar 

  • Balsters JH, Cussans E, Diedrichsen J, Phillips JK, Ramnani N (2010) Evolution of the cerebellar cortex: the selective expansion of prefrontal-projecting cerebellar lobules. NeuroImage 49:2045–2052

    CAS  Google Scholar 

  • Baldwin MKL, Cooke DF, Krubitzer L (2016) Intracortical microstimulation maps of motor, somatosensory, and posterior parietal cortex in tree shrews (tupaia belangeri) reveal complex movement representations. Cereb Cortex 27:1439–1456

    Google Scholar 

  • Barrickman NL, Bastian ML, Isler K, Van Schaik CP (2008) Life history costs andbenefits of encephalization: a comparative test using data from long-term studies of primates in the wild. J Hum Evol 54:568–590

    Google Scholar 

  • Barton RA, Harvey PH (2000) Mosaic evolution of brain struture in mammals. Nature 405: 1055–1058

    CAS  Google Scholar 

  • Brodal A (1981) Neurological anatomy, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • Brodmann K (1909) Vergleichende lokalisationslehre der grosshirnride. Barth, Leipzig

    Google Scholar 

  • Brown AR, Teskey GC (2014) Motor cortex is functionally organized as a set of spatially distinct representations for complex movements. J Neurosci 34:13574–13585

    CAS  Google Scholar 

  • Buxhoeveden DP, Switala AE, Roy E, Litaker M, Casanova MF (2001) Morphological differences between minicolumns in human and nonhuman primate cortex. Am J Phys Anthropol 115:361–371

    CAS  Google Scholar 

  • Byrne RW, Corp N (2004) Neocortex size predicts deception rate in primates. Proc R Soc Lond B 271:1693–1699

    Google Scholar 

  • Caminiti R, Ghaziri H, Galuske R, Hof PR, Innocenti GM (2009) Evolution amplified processing with temporally dispersed slow neuronal connectivity in primates. Proc Natl Acad Sci U S A 106:19551–19556

    CAS  Google Scholar 

  • Casanova MF, Opris I (2015) Recent advances in the modular organization of the cortex. Springer, New York

    Google Scholar 

  • Cherniak C (1990) The bounded brain: toward quantitative neuroanatomy. J Cogn Neurosci 2: 58–68

    CAS  Google Scholar 

  • Collins CE, Hendrickson A, Kaas JH (2005) Overview of the visual system of Tarsius. Anat Rec 287A:1013–1025

    Google Scholar 

  • Collins CE, Leitch DB, Wong P, Kaas JH, Herculano-Houzel S (2013) Faster scaling of visual neurons in cortical areas relative to subcortical structures in primate brains. Brain Struct Funct 218:805–816

    CAS  Google Scholar 

  • Collins CE, Turner EC, Sawyer EK, Reed JL, Young NA, Flaherty DK, Kaas JH (2016) Cortical cell and neuron density estimates in one chimpanzee hemisphere. Proc Natl Acad Sci U S A 113:740–745

    CAS  Google Scholar 

  • Cooper HM, Herbin M, Nevo E (1993) Visual system of a naturally microphthalmic mammal: the blind mole rat, Spalax ehrenbergi. J Comp Neurol 328:313–350

    CAS  Google Scholar 

  • Creutzfeldt OD (1993) Cortex Cerebri English edition. Hubent and Co., Gottingen

    Google Scholar 

  • Cusick CG, Kaas JH (1986) Interhemispheric connections of cortical sensory and motor maps in primates. In: Lepore F, Ptito M, Jasper HH (eds) Two hemispheres- one brain. Alan R Liss, New York, pp 83–102

    Google Scholar 

  • Deaner RO, Isler K, Burkart J, van Schaik C (2007) Overall brain size, and not encephalization quotient, best predicts cognitive ability across non-human primates. Brain Behav Evol 70:115–124

    Google Scholar 

  • Delacour J (1997) Neurobiology of consciousness: an overview. Behav Brain Res 85:127–141

    CAS  Google Scholar 

  • Desmurget M, Richard N, Harquel S, Baraduc P, Szathmari A, Mottolese C, Sirigu A (2014) Neural representations of ethologically relevant hand/mouth synergies in the human precentral gyrus. Proc Natl Acad Sci U S A 111:5718–5722

    CAS  Google Scholar 

  • Doty RW (2007) Cortical commissural connections in primates. In: Kaas JH, Preuss TM (eds) Evolution of nervous systems, vol 4. Primates. Elsevier, London, pp 277–279

    Google Scholar 

  • Dunbar RIM (1998) The social brain hypothesis. Evol Anthropl 6:178–190

    Google Scholar 

  • Elston GN, Benavides-Piccione R, Elston A, Zietsch B, Defelipe J, Manger P, Casagrande V, Kaas JH (2006) Specializations of the granular prefrontal cortex of primates: implications for cognitive processing. Anat Rec A Discov Mol Cell Evol Biol 288A:26–35

    Google Scholar 

  • Fan S, Hansen ME, Lo Y, Tishkoff SA (2016) Going global by adapting local: a review of recent human adaptation. Science 354:54–59

    CAS  Google Scholar 

  • Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    CAS  Google Scholar 

  • Felleman DJ, Lim H, Xiao Y, Wang Y, Eriksson A, Parajuli A (2015) The representation of orientation in macaque V2: four stripes not three. Cereb Cortex 25:2354–2369

    Google Scholar 

  • Finlay BL, Darlington RB (1995) Linked regularities in the development and evolution of mammalian brains. Science 268:1578–1584

    CAS  Google Scholar 

  • Fonseca-Azevedo K, Herculano-Houzel S (2012) Metabolic constraint imposes tradeoff between body size and number of brain neurons in human evolution. Proc Natl Acad Sci U S A 109:18571–18576

    CAS  Google Scholar 

  • Fournier J, Muller CM, Laurent G (2015) Looking for the roots of cortical sensory computation in three-layered cortex. Current Opin Neurobiol 3l:119–126

    Google Scholar 

  • Frey SH (2008) Tool use, communicative gesture and cerebral asymmetries in the modern human brain. Philos Trans R Soc Lond Ser B Biol Sci 363:1951–1957

    Google Scholar 

  • Fries W, Keizer K, Kuypers HG (1985) Large layer VI cells in macaque striate cortex (Meynert cells) project to both superior colliculus and prestriate visual area V5. Exp Brain Res 58:613–616

    CAS  Google Scholar 

  • Gabi M, Neves K, Masseron C, Ribeiro PFM, Ventura-Antunes L, Torres L, Mota B, Kaas JH, Herculano-Houzel S (2016) No relative expansion of the number of prefrontal neurons in primate and human evolution. Proc Natl Acad Sci U S A 113:9617–9622

    CAS  Google Scholar 

  • Gazzaniga MS (2000) Cerebral specialization and interhemispheric communication: does the corpus callosum enable the human condition? Brain 123(Pt 7):1293–1326

    Google Scholar 

  • Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, Ugurbil K, Andersson J, Beckmann CF, Jenkinson M, Smith SM, Van Essen DC (2016) A multi-modal parcellation of human cerebral cortex. Nature 536:171–178

    CAS  Google Scholar 

  • Goldman-Rakic PS (1996) Regional and cellular fractionation of working memory. Proc Natl Acad Sci U S A 93:13473–13480

    CAS  Google Scholar 

  • Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25

    CAS  Google Scholar 

  • Gould HJ, Cusick CG, Pons TP, Kaas JH (1986) The relationship of corpus callosum connections to electrical stimulation maps of motor, supplementary motor, and the frontal eye fields in owl monkeys. J Comp Neurol 247(3):297–325

    Google Scholar 

  • Gould SJ (1981) Mismeasure of man. Norton, New York

    Google Scholar 

  • Graziano MS (2009) The intelligent movement machine. Oxford University Press, New York

    Google Scholar 

  • Herculano-Houzel S (2009) The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci 3:31

    Google Scholar 

  • Herculano-Houzel S (2015) Decreasing sleep requirement with increasing numbers of neurons as a driver for bigger brains and bodies in mammalian evolution. Proc R Soc B 282:20151853

    Google Scholar 

  • Herculano-Houzel S (2016) The human advantage. MIT Press, Cambridge

    Google Scholar 

  • Herculano-Houzel S (2017) Numbers of neurons as biological correlates of cognitive capability. Curr Opin Behav Sci 16:1–7

    Google Scholar 

  • Herculano-Houzel S, Mota B, Lent R (2006) Cellular scaling rules for rodent brains. Proc Natl Acad Sci U S A 103:12138–12143

    CAS  Google Scholar 

  • Herculano-Houzel S, Collins CE, Wong P, Kaas JH (2007) Cellular scaling rules for primate brains. Proc Natl Acad Sci U S A 104:3562–3567

    CAS  Google Scholar 

  • Herculano-Houzel S (2010) Coordinated scaling of cortical and cerebellar numbers of neurons. Front Neuroanat 4:12. https://doi.org/10.3389/fnana.2010.00012

    Article  Google Scholar 

  • Herculano-Houzel S, Mota B, Wong P, Kaas JH (2010) Connectivity-driven white matter scaling and folding in primate cerebral cortex. Proc Natl Acad Sci U S A 107:19008–19013

    CAS  Google Scholar 

  • Herculano-Houzel S, Watson C, Paxinos G (2013) Distribution of neurons in functional areas of the mouse cerebral cortex reveals quantitatively different cortical zones. Front Neuroanat 7:35

    Google Scholar 

  • Herculano-Houzel S, Manger PR, Kaas JH (2014a) Brain scaling in mammalian evolution as a consequence of concerted and mosaic changes in numbers of neurons and average neuronal cell size. Front Neuroanat 8:77

    Google Scholar 

  • Herculano-Houzel S, Avelino-de-Souza K, Neves K, Porfírio J, Messeder D, Feijó LM, Maldonado J, Manger PR (2014b) The elephant brain in numbers. Front Neuroanat 8:46

    Google Scholar 

  • Herculano-Houzel S, Kaas JH, de Oliveira-Souza R (2016) Corticalization of motor control in humans is a consequence of brain scaling in primate evolution. J Comp Neurol 524:448–455

    Google Scholar 

  • Hill J, Inder T, Neil J, Dierker D, Harwell J, Van Essen D (2010) Similar patterns of cortical expansion during human development and evolution. Proc Natl Acad Sci U S A 107: 13135–13140

    CAS  Google Scholar 

  • Jerison H (1973) Evolution of the brain and intelligence. Academic, New York

    Google Scholar 

  • Kaas JH (2000) Why brain size is so important: design problems and solutions as neocortex gets bigger or smaller. Brain Mind 1:7–23

    Google Scholar 

  • Kaas JH (2006) Evolution of the neocortex. Curr Biol 16:R910–R914

    CAS  Google Scholar 

  • Kaas JH (2007) Reconstructing the organization of neocortex of the first mammals and subsequent modifications. In: Kaas JH, Krubitzer LA (eds) Evolution of nervous systems, vol. 3, mammals. Elsevier, London, pp 27–48

    Google Scholar 

  • Kaas JH (2012) Evolution of columns, modules, and domains in the neocortex of primates. Proc Natl Acad Sci U S A 109(Suppl 1):10655–10660

    CAS  Google Scholar 

  • Kaas JH, Preuss TM (2014) Human brain evolution In: Fundamental neuroscience, 4th ed., Larry R Squire (ed), Elsevier, London, pp 901–918

    Google Scholar 

  • Kaas JH, Balaram P (2015) The types of functional and structural subdivisions of cortical areas. In: Casanova MF, Opris I (eds) Recent advances on the modular organization of the Cortex. Springer, New York, pp 35–62. https://doi.org/10.1007/978-94-37-9900-3_4

    Chapter  Google Scholar 

  • Kaas JH, Stepniewska I (2016) Evolution of posterior parietal cortex and parietal-frontal networks for specific actions in primates. J Comp Neurol 524:595–608

    Google Scholar 

  • Kaas JH (2017) The organization of neocortex in early mammals. In: Herculano-Houzel S (ed) Evolution of nervous systems, Mammals, vol 2, 2nd edn. Elsevier, London, pp 87–101

    Google Scholar 

  • Krubitzer L, Campi KL, Cooke DF (2011) All rodents are not the same: a modern synthesis of cortical organization. Brain Behav Evol 78:51–93

    Google Scholar 

  • Krubitzer L, Manger P, Pettigrew J, Calford M (1995) Organization of somatosensory cortex in monotremes: in search of the prototypical plan. J Comp Neurol 351:261–306

    CAS  Google Scholar 

  • Kruska DCT (2007) The effects of domestication on brain size. In: Kaas JH, Krubitzer LA (eds) Evolution of nervous systems, Mammals, vol 3. Elsevier, London, pp 143–153

    Google Scholar 

  • Lefebvre L, Reader SM, Sol D (2004) Brains, innovations and evolution in birds and primates. Brain Behav Evol 63:233–246

    Google Scholar 

  • Leiner HC, Leiner A, Dow RS (1989) Reappraising the cerebellum: what does the hindbrain contribute to the forebrain? Behav Neurosci 103:998–1008

    CAS  Google Scholar 

  • Liao CC, Reed JL, Kaas JH, Qi HX (2016) Intracortical connections are altered after long-standing deprivation of dorsal column inputs in the hand region of area 3b in squirrel monkeys. J Comp Neurol 524:1494–1526

    Google Scholar 

  • Livingstone M, Hubel D (1988) Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science 240:740–749

    CAS  Google Scholar 

  • MacLean EL et al (2014) The evolution of self-control. Proc Natl Acad Sci U S A 111:E2141–E2148

    Google Scholar 

  • McHenry HM (1994) Tempo and mode in human evolution. Proc Natl Acad Sci U S A 91:6780–6786

    CAS  Google Scholar 

  • Mota B, Herculano-Houzel S (2014) All brains are made of this: a fundamental building block of brain matter with matching neuronal and glial masses. Front Neuroanat 8:127

    Google Scholar 

  • Mota B, Herculano-Houzel S (2015) Cortical folding scales universally with surface area and thickness, not number of neurons. Science 349:74–77

    CAS  Google Scholar 

  • Mountcastle VB (1957) Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol 20:408–434

    CAS  Google Scholar 

  • Nimchinsky EA, Gilissen E, Allman JM, Perl DP, Erwin JM, Hof PR (1999) A neuronal morphologic type unique to humans and great apes. Proc Natl Acad Sci U S A 96:5268–5273

    CAS  Google Scholar 

  • Opris I, Popa IL, Casanova MF (2015) Prefrontal cortical microcircuits for executive control of behavior. In: Casanova MF, Opris I (eds) Recent advances on the modular organization of cortex. Springer, New York, pp 157–179

    Google Scholar 

  • Perge JA, Niver JE, Margraini E, Balasubramanian V, Sterling P (2012) Why do axons differ in caliber? J Neurosci 32:626–638

    CAS  Google Scholar 

  • Phillips KA, Stimpson CD, Smaers JB, Raghanti MA, Jacobs B, Popratiloff A, Hof PR, Sherwood CC (2015) The corpus callosum in primates: processing speed of axons and the evolution of hemispheric asymmetry. Proc Biol Sci 282(1818):282. 20151535

    Google Scholar 

  • Pinker S (2009) How the mind works. W W Norton and Company, New York

    Google Scholar 

  • Preuss TM, Qi H, Kaas JH (1999) Distinctive compartmental organization of human primary visual cortex. Proc Natl Acad Sci U S A 96:11601–11606

    CAS  Google Scholar 

  • Preuss TM (1995) Do rats have prefrontal cortex? The rose-woolsey-akert program reconsidered. J Cogn Neurosci 7:1–24

    CAS  Google Scholar 

  • Preuss TM, Coleman GQ (2002) Human specific organization of primary visual cortex: alternating compartments of dense cat 301 and calbindin immunoreactivity in layer 4A. Cereb Cortex 12:671–691

    Google Scholar 

  • Radinsky L (1976) Cerebral clues. Nat Hist 85:54–59

    Google Scholar 

  • Ramnani N (2006) The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci 7:511–522

    CAS  Google Scholar 

  • Ramnani N, Behrens TE, Johansen-Berg H, Richter MC, Pinks MA, Andersoon JL, Rudebeck P, Ciccarelli O, Richter W, Thomson AJ, Gross CG, Robson MD, Kastner S, Matthews PS (2006) The evolution of prefrontal inputs to the cortico-pontine system: diffusion imaging evidence from macaque monkeys and humans. Cereb Cortex 16:811–818

    Google Scholar 

  • Rauschecker JP, Scott SK (2009) Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nat Neurosci 12:718–724

    CAS  Google Scholar 

  • Ringo JL, Doty RW, Demeter S, Simard PY (1994) Time is of the essence: a conjecture that hemispheric specialization arises from interhemispheric conduction delay. Cereb Cortex 4:331–343

    CAS  Google Scholar 

  • Spocter MA, Raghanti MA, Butti C, Hof PR, Sherwood CC (2015) The minicolumns in comparative cortex. In: Casanova MF, Opris I (eds) Recent advances on the modular organization of the cortex. Springer, New York, pp 63–80

    Google Scholar 

  • Stein JF, Glickstein M (1992) Role of the cerebellum in visual guidance of movement. Physiol Rev 72:967–1017

    CAS  Google Scholar 

  • Thach WT, Goodkin HP, Keating JG (1992) The cerebellum and the adaptive coordination of movement. Annu Rev Neurosci 15:403–442

    CAS  Google Scholar 

  • Timmermann A, Friedrich T (2016) Late Pleistocene climate drivers of early human migration. Nature 538:92–95

    CAS  Google Scholar 

  • Tremblay P, Dick AS (2016) Broca and Wernicke are dead, or moving past the classic model of language neurobiology. Brain Lang 162:60–71

    Google Scholar 

  • Turner EC, Young NA, Reed JL, Collins CE, Flaherty DK, Gabi M, Kaas JH (2016) Distributions of cells and neurons across the cortical sheet in old world macaques. Brain Behav Evol 88:1–13. https://doi.org/10.11591000446762

    Google Scholar 

  • Ungerleider LG, Haxby JV (1994) ‘What’ and ‘where’ in the human brain. Curr Opin Neurobiol 4:157–165

    CAS  Google Scholar 

  • Van Essen D (1997) A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385:313–318

    Google Scholar 

  • Ventura-Antunes L, Mota B, Herculano-Houzel S (2013) Different scaling of white matter volume, cortical connectivity and gyrification across rodent and primate brains. Front Neuroanat 7:3

    Google Scholar 

  • Watson C, Provis J, Herculano-Houzel S (2012) What determines motor neuron number? Slow scaling of facial motor neuron numbers with body mass in marsupials and primates. Anat Rec 295:1683–1691

    Google Scholar 

  • Welker WI (1990) Why does cerebral cortex fissure and fold? In: Jones EG, Peters A (eds) Cerebral cortex, vol 8B. Plenum Press, New York, pp 3–136

    Google Scholar 

  • Wong P, Kaas JH (2010) Architectonic subdivisions of neocortex in the galago (Otolemur garnetti). Anat Rec 293:1033–1069

    Google Scholar 

  • Wong P, Peebles JK, Asplund CL, Collins CE, Herculano-Houzel S, Kaas JH (2013) Faster scaling of auditory neurons in cortical areas relative to subcortical structures in primate brains. Brain Behav Evol 81:209–218

    Google Scholar 

  • Young NA, Szabo CA, Phelix CF, Flaherty DK, Balaram P, Foust-Yeoman KB, Collins CE, Kaas JH (2013) Epileptic baboons have lower numbers of neurons in specific areas of cortex. Proc Natl Acad Sci U S A 110:19107–19112

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon H. Kaas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaas, J.H., Herculano-Houzel, S. (2017). What Makes the Human Brain Special: Key Features of Brain and Neocortex. In: Opris, I., Casanova, M.F. (eds) The Physics of the Mind and Brain Disorders. Springer Series in Cognitive and Neural Systems, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-29674-6_1

Download citation

Publish with us

Policies and ethics