Skip to main content

Part of the book series: Springer Series on Epidemiology and Public Health ((SSEH))

Abstract

Epidemiologists seek associations between environmental factors, lifestyle influences and human health; they use current modifications of a series of guidelines enunciated by Bradford Hill to assess the hypothesis that observed associations are causal in nature. We now have a long list of medical conditions where physical activity has been suggested as having a beneficial influence in prevention and/or treatment. Questionnaire evaluations of such claims have been hampered by the limited reliability and validity of self-reports. The introduction of pedometer/accelerometers and other objective monitors has facilitated the determination of causality, allowing investigators to study the effects of clearly specified types, intensities, frequencies and durations of physical activity. Nevertheless, further improvement of monitoring devices is needed in order that epidemiologists can capture the full range of activities typical of children and younger adults. Objective monitoring does not support the hypothesis that a minimum intensity of physical effort is needed for health benefit; indeed, in sedentary individuals the largest improvements in health are often seen with quite small increases of habitual activity. There is no obvious threshold of response, but for many medical conditions available data suggests a ceiling of benefit, with no apparent gains of health once habitual activity attains a specified upper limit. Causality can never be totally proven, but objective data allows the inference that multiple health benefits will stem from moderate daily physical activity; the evidence is sufficiently strong that people of all ages should be urged to adopt such behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise and physical fitness: definitions and distinctions for health-related research. Public Health Rep. 1985;100(2):126–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bouchard C, Shephard RJ, Stephens T, et al. Exercise, fitness and health. Champaign, IL: Human Kinetics; 1990.

    Google Scholar 

  3. Bouchard C, Shephard RJ, Stephens T. Physical activity, fitness and health. Champaign, IL: Human Kinetics; 1994.

    Google Scholar 

  4. Brown JR, Crowden GP. Energy expenditure ranges and muscular work grades. Br J Ind Med. 1963;20:277–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. McIntosh PC. “Sport for all” programs around the world. Paris, France: UNESCO; 1980.

    Google Scholar 

  6. Hanke H. Freizeit in der DDR (Leisure time in East Germany). Berlin, Germany: Dietz Verlag; 1979.

    Google Scholar 

  7. Stundl H. Freizeit und Erholungsport in der DDR (Free time and recreational sport in East Germany). Schorndorf, Germany: Karl Hofmann Verlag; 1977.

    Google Scholar 

  8. U.S. Bureau of Labor. American time use survey—2013 results. Washington, DC: U.S. Bureau of Labor; 2014.

    Google Scholar 

  9. Passmore R, Durnin JVGA. Human energy expenditure. Physiol Rev. 1955;35:801–40.

    CAS  PubMed  Google Scholar 

  10. World Health Organisation. Global recommendations on physical activity for health. Geneva, Switzerland: World Health Organisation; 2010.

    Google Scholar 

  11. Godin G, Shephard RJ. A simple method to assess exercise behaviour in the community. Can J Appl Sport Sci. 1985;10:141–6.

    CAS  PubMed  Google Scholar 

  12. Shephard RJ. Endurance fitness, (2nd ed.) Toronto, ON: University of Toronto Press; 1977.

    Google Scholar 

  13. Clemes SA, Matchett N, Wane SL. Reactivity: an issue for short-term pedometer studies? Br J Sports Med. 2008;42:68–70.

    Article  CAS  PubMed  Google Scholar 

  14. Clemes SA, Deans NK. The presence and duration of reactivity to pedometers in adults. Med Sci Sports Exerc. 2012;44(6):1097–101.

    Article  PubMed  Google Scholar 

  15. Matthews CE, Ainsworth BE, Thompson RW, et al. Sources of variance in daily physical activity levels as measured by an accelerometer. Med Sci Sports Exerc. 2002;34(8):1376–81.

    Article  PubMed  Google Scholar 

  16. Weiner JS, Lourie JA. Human biology: a guide to field methods. Oxford: Blackwell; 1969.

    Google Scholar 

  17. Blair SN, Haskell WL, Ho P, et al. Assessment of habitual physical activity by a seven day recall in a community survey and controlled experiments. Am J Epidemiol. 1985;122(5):795–804.

    Google Scholar 

  18. Cain KL, Geremia CM. Accelerometer data collection and scoring manual. San Diego, CA: James Sallis Active Living Laboratory, San Diego State University; 2011.

    Google Scholar 

  19. Tudor-Locke C, Burkett L, Reis JP, et al. How many days of pedometer monitoring predict weekly physical activity in adults? Prev Med. 2005;40:293–8.

    Article  CAS  PubMed  Google Scholar 

  20. Kubota A, Nagata J, Sugiyama M, et al. How many days of pedometer monitoring predict weekly physical activity in Japanese adults? Nihon Koshu Eisei Zasshi (Jap J Publ Health). 2009;56:805–10.

    Google Scholar 

  21. Trost SG, Pate RR, Freedson PS, et al. Using objective physical activity measures with youth: how many days of monitoring are needed? Med Sci Sports Exerc. 2000;32(2):426–31.

    Article  CAS  PubMed  Google Scholar 

  22. Tudor-Locke C, Bassett DR, Swartz AM, et al. A preliminary study of one year of pedometer self-monitoring. Ann Behav Med. 2004;3:158–62.

    Article  Google Scholar 

  23. Yasunaga A, Togo F, Watanabe E, et al. Sex, age, season, and habitual physical activity of older Japanese: the Nakanojo study. J Aging Phys Act. 2008;16:3–13.

    PubMed  Google Scholar 

  24. Togo F, Watanabe E, Park H, et al. Meteorology and the physical activity of the elderly: the Nakanojo study. Int J Biometeorol. 2006;50(2):83–9.

    Article  Google Scholar 

  25. Hjorth MF, Chaput J-P, Michaelsen K, et al. Seasonal variation in objectively measured physical activity, sedentary time, cardio-respiratory fitness and sleep duration among 8–11 year-old Danish children: a repeated-measures study. BMC Public Health. 2013;13:8098.

    Article  Google Scholar 

  26. Basiotis PP, Welsh SO, Cronin FJ, et al. Number of days of food intake records required to estimate individual and group nutrient intakes with defined confidence. J Nutr. 1987;117(9):1638–41.

    CAS  PubMed  Google Scholar 

  27. Matthews CE, Hebert J, Freedson PS. Sources of variance in daily physical activity levels in the seasonal variation of blood cholesterol study. Am J Epidemiol. 2001;153:987–95.

    Article  CAS  PubMed  Google Scholar 

  28. Togo F, Watanabe E, Park H, et al. How many days of pedometer use predict the annual activity of the elderly reliably? Med Sci Sports Exerc. 2008;40(6):1058–64.

    Article  PubMed  Google Scholar 

  29. Levin S, Jacobs DR, Ainsworth BE, et al. Intraindividual variation and estimates of usual physical activity. Ann Epidemiol. 1989;9(8):481–8.

    Article  Google Scholar 

  30. Hatano Y. Use of the pedometer for promoting daily walking exercise. ICHPER. 1993;29:4–8.

    Google Scholar 

  31. Welk GJ, Differding J, Thompson RW, et al. The utility of the Digi-walker step counter to assess daily physical activity patterns. Med Sci Sports Exerc. 2000;32(9):S481–8.

    Article  CAS  PubMed  Google Scholar 

  32. Wilde BE, Sidman CL, Corbin CB. A 10,000 step count as a physical activity target for sedentary women. Res Q Exerc Sport. 2001;72(4):411–4.

    Article  CAS  PubMed  Google Scholar 

  33. Moreau KL, Degarmo R, Langley J, et al. Increasing walking lowers blood pressure in postmenopausal women. Med Sci Sports Exerc. 2001;33(11):1825–31.

    Article  CAS  PubMed  Google Scholar 

  34. Swartz AM, Thompson DL. Increasing daily walking improves glucose tolerance in overweight women. Res Q Exerc Sport. 2002;73(Suppl):A16.

    Google Scholar 

  35. Iwane M, Arita M, Tomimoto S, et al. Walking 10,000 steps/day or more reduces blood pressure and sympathetic nerve activity in mild essential hypertension. Hypertens Res. 2000;23:573–80.

    Article  CAS  PubMed  Google Scholar 

  36. Tudor-Locke C, Bassett DR. How many steps/day are enough? Preliminary pedometer indices for public health. Sports Med. 2004;34(1):1–8.

    Article  PubMed  Google Scholar 

  37. Rowlands AV, Eston RG, Ingledew DK. Relationship between activity levels, aerobic fitness, and body fat in 8- to 10-yr-old children. J Appl Physiol. 1989;86(4):1428–35.

    Google Scholar 

  38. Public Health Agency of Canada. Physical activity tips for adults (18–64 years). 2014. http://www.phac-aspcgcca/hp-ps/hl-mvs/pa-ap/07paap-engphp.

  39. American Heart Association. American Heart Association recommendations for physical activity in adults. 2014. http://www.heart.org/HEARTORG/GettingHealthy/PhysicalActivity/ FitnessBasics/American-Heart-Association-Recommendations-for-Physical-Activity-in-Adults_UCM_307976_Articlejsp.

  40. Tudor-Locke C, Jones GR, Myers AM, et al. Contribution of structured exercise class participation and informal walking to daily physical activity in community-dwelling older adults. Res Q Exerc Sport. 2002;73(3):350–6.

    Article  CAS  PubMed  Google Scholar 

  41. Aoyagi Y, Shephard RJ. Steps per day: the road to senior health? Sports Med. 2009;39:423–38.

    Article  PubMed  Google Scholar 

  42. Public Health Agency of Canada. Physical activity tips for children (5–11 years). 2014. http://www.phac-aspcgcca/hp-ps/hl-mvs/pa-ap/05paap-engphp.

  43. American Heart Association. AHAs recommendations for physical activity in children. 2014. http://www.heart.org/HEARTORG/GettingHealthy/HealthierKids/ActivitiesforKids/The-AHAs- Recommendations-for-Physical-Activity-in-Children_UCM_304053_Articlejsp.

  44. Bassett Jr DR, Cureton AL, Ainsworth BE. Measurement of daily walking distance: questionnaire versus pedometer. Med Sci Sports Exerc. 2000;32(5):1018–23.

    Article  PubMed  Google Scholar 

  45. Mizuno C, Yoshida T, Udo M. Estimation of energy expenditure during walking and jogging by using an electro-pedometer. Ann Physiol Anthropol. 1990;9:283–9.

    Article  CAS  PubMed  Google Scholar 

  46. Shephard RJ, Aoyagi Y. Objective monitoring of physical activity in older adults: clinical and practical implications. Phys Ther Rev. 2010;15:170–82.

    Article  Google Scholar 

  47. Tudor-Locke C, Myers AM. Methodological considerations for researchers and practitioners using pedometers to measure physical (ambulatory) activity. Res Q Exerc Sport. 2001;72:1–12.

    Article  CAS  PubMed  Google Scholar 

  48. Freedson P, Melanson E, Sirard J. Calibration of the computer science and applications accelerometer. Med Sci Sports Exerc. 1998;30(5):777–81.

    Article  CAS  PubMed  Google Scholar 

  49. Matthews CE, Chen KY, Freedson PS, et al. Amount of time spent in sedentary behaviors in the United States, 2003–2004. Am J Epidemiol. 2008;167(7):875–81.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kozey-Keadle S, Libertine A, Lyden K, et al. Validation of wearable monitors for assessing sedentary behavior. Med Sci Sports Exerc. 2011;43:1561–7.

    Article  PubMed  Google Scholar 

  51. Brage S, Wedderkopp N, Franks PW, et al. Reexamination of validity and reliability of the CSA monitor in walking and running. Med Sci Sports Exerc. 2003;35:1447–54.

    Article  PubMed  Google Scholar 

  52. Leenders NY, Nelson TE, Sherman WM. Ability of different physical activity monitors to detect movement during treadmill walking. Int J Sports Med. 2003;24:43–50.

    Article  CAS  PubMed  Google Scholar 

  53. Metzger JS, Catellier DJ, Evenson KR, et al. Patterns of objectively measured physical activity in the United States. Med Sci Sports Exerc. 2008;40:630–8.

    Article  PubMed  Google Scholar 

  54. Yngve A, Nilsson A, Sjostrom M, et al. Effect of monitor placement and of activity setting on the MTI accelerometer. Med Sci Sports Exerc. 2003;35(2):320–6.

    Article  PubMed  Google Scholar 

  55. Abel MG, Hannon JC, Sell K, et al. Validation of the Kenz Lifecorder EX and Actigraph GT1M accelerometers for walking and running in adults. Appl Physiol Nutr Metab. 2008;33:1155–64.

    Article  PubMed  Google Scholar 

  56. Schneider PL, Crouter SE, Lukajic O, et al. Accuracy and reliability of 10 pedometers for measuring steps over a 400-m walk. Med Sci Sports Exerc. 2003;35:1779–84.

    Article  PubMed  Google Scholar 

  57. Bassett DR, Ainsworth BE, Leggett SR, et al. Accuracy of five electronic pedometers for measuring distance walked. Med Sci Sports Exerc. 1996;28:1071–7.

    Article  PubMed  Google Scholar 

  58. Albright C, Hultquist CN, Thompson DL. Validation of the Lifecorder EX activity monitor. Med Sci Sports Exerc. 2006;35 Suppl 5:S500.

    Article  Google Scholar 

  59. Bassey EJ, Dalloso HM, Fentem PH, et al. Validation of a simple mechanical accelerometer (pedometer) for the estimation of walking activity. Eur J Appl Physiol. 1987;56:323–30.

    Article  CAS  Google Scholar 

  60. Yokoyama Y, Kawamura T, Tamakoshi A, et al. Comparison of accelerometry and oxymetry for measuring daily physical activity. Circulation. 2002;66:751–4.

    Article  Google Scholar 

  61. Kumahara H, Yoshioka M, Yoshitake Y, et al. Validity assessment of daily expenditure in a respiration chamber by accelerometry located on the waist vs the wrist or in combination. Med Sci Sports Exerc. 2002;34 Suppl 5:S140.

    Article  Google Scholar 

  62. Cyarto EV, Myers AM, Tudor-Locke C. Pedometer accuracy in nursing home and community dwelling older adults. Med Sci Sports Exerc. 2004;36:205–9.

    Article  PubMed  Google Scholar 

  63. Sirard JR, Pate RR. Physical activity assessment in children and adolescents. Sports Med. 2001;31:439–54.

    Article  CAS  PubMed  Google Scholar 

  64. Le Masurier GC, Tudor-Locke C. Comparison of pedometer and accelerometer accuracy under controlled conditions. Med Sci Sports Exerc. 2003;35:867–71.

    Article  PubMed  Google Scholar 

  65. McClain JJ, Craig CL, Sisson BB, et al. Comparison of Lifecorder EX and Actigraph accelerometers under free-living conditions. Appl Physiol Nutr Metab. 2007;32(4):753–61.

    Article  PubMed  Google Scholar 

  66. Dondzila CJ, Swartz AM, Miller NL, et al. Accuracy of uploadable pedometers in laboratory, overground, and free-living conditions in young and older adults. Int J Behav Nutr Phys Act. 2012;9:143.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Eston RG, Rowlands AV, Ingledew DK. Validity of heart rate, pedometry, and accelerometry for predicting the energy cost of children’s activities. J Appl Physiol. 1998;84(1):362–71.

    CAS  PubMed  Google Scholar 

  68. Choquette S, Chuin A, LaLancette R-A, et al. Predicting energy expenditure in elders with the metabolic cost of activities. Med Sci Sports Exerc. 2009;41:1915–20.

    Article  PubMed  Google Scholar 

  69. Colbert L, Matthews CE, Havighurst TC, et al. Comparative validity of physical activity measures in older adults. Med Sci Sports Exerc. 2011;43:867–76.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Fogelholm M, Hiilloskorpi H, Laukkanen R, et al. Assessment of energy expenditure in overweight women. Med Sci Sports Exerc. 1998;30:1191–7.

    Article  CAS  PubMed  Google Scholar 

  71. Gardner AW, Poehlman ET. Assessment of free-living daily activity in older claudicants: validation against the double labeled water technique. J Gerontol A Biol Sci Med Sci. 1998;53A:M275–80.

    Article  Google Scholar 

  72. Rafamantanantsoa HH, Ebine N, Yoshioka M, et al. Validation of three alternative methods to measure total energy expenditure against the doubly labeled water method for older Japanese men. J Nutr Sci Vitaminol. 2002;48:517–23.

    Article  PubMed  Google Scholar 

  73. Starling RD, Matthews DE, Ades PA, et al. Assessment of physical activity in older individuals: a doubly labeled water study. J Appl Physiol. 1999;86:2090–6.

    CAS  PubMed  Google Scholar 

  74. Leenders NYJM, Sherman WM, Nagaraja HN, et al. Evaluation of methods to assess physical activity in free-living conditions. Med Sci Sports Exerc. 2001;33:1233–40.

    Article  CAS  PubMed  Google Scholar 

  75. Kesaniemi YK, Danforth E, Jensen PJ, et al. Dose-response issues concerning physical activity and health: an evidence-based symposium. Med Sci Sports Exerc. 2001;33:S351–8.

    Article  CAS  PubMed  Google Scholar 

  76. Lamonte MJ, Ainsworth BE. Quantifying energy expenditure and physical activity in the context of dose response. Med Sci Sports Exerc. 2001;33(6 Suppl):S370–8.

    Article  CAS  PubMed  Google Scholar 

  77. Haskell WL, Yee MC, Evans A, et al. Simultaneous measurement of heart rate and body motion to quantitate physical activity. Med Sci Sports Exerc. 1993;25:109–15.

    Article  CAS  PubMed  Google Scholar 

  78. Ainsworth BE, Bsssett DR, Strath SJ, et al. Comparison of three methods for measuring the time spent in physical activity. Med Sci Sports Exerc. 2000;32:S457–64.

    Article  CAS  PubMed  Google Scholar 

  79. Welk GJ, Blair SN, Wood K, et al. A comparative evaluation of three accelerometry-based physical activity monitors. Med Sci Sports Exerc. 2000;32:S489–97.

    Article  CAS  PubMed  Google Scholar 

  80. Blair SN, Cheng Y, Holder JS. Is physical activity or physical fitness more important in defining health benefits? Med Sci Sports Exerc. 2001;33 Suppl 2:S379–99.

    Article  CAS  PubMed  Google Scholar 

  81. Shephard RJ, Aoyagi Y. Associations of activity monitor output and an estimate of aerobic fitness with pulse wave velocities: the Nakanojo study. J Phys Activ Health. 2014 (in press).

    Google Scholar 

  82. Morris JN, Clayton DG, Everitt MG. Exercise in leisure time: coronary attack and death rates. Br Heart J. 1990;63:325–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Aoyagi Y, Park H, Kakiyama T, et al. Yearlong physical activity and regional stiffness of arterial segments in older adults: the Nakanojo study. Eur J Appl Physiol. 2010;109(3):455–64.

    Article  PubMed  Google Scholar 

  84. Sugawara J, Otsuki T, Tanabe T, et al. Physical activity duration, intensity and arterial stiffening in post-menopausal women. Am J Hypertens. 2006;19:1032–6.

    Article  PubMed  Google Scholar 

  85. Gando Y, Yamamoto K, Murakami H, et al. Longer time spent in light physical activity is associated with reduced arterial stiffness in older adults. Hypertension. 2010;56:540–6.

    Article  CAS  PubMed  Google Scholar 

  86. Hawkins M, Gabriel KP, Cooper J, et al. The impact of change in physical activity on change in arterial stiffness in overweight or obese sedentary young adults. Vasc Med. 2014;19(4):257–63.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Alhassan S, Robinson TM. Objectively measured physical activity and cardiovascular disease risk factors in African American girls. Ethn Dis. 2008;18(4):421–8.

    PubMed  PubMed Central  Google Scholar 

  88. Pelclová J, Gába A, Kapuš S. Bone mineral density and accelerometer-determined habitual physical activity in postmenopausal women. Acta Univ Palacki Olomuc Gymn. 2011;41(3):47–53.

    Article  Google Scholar 

  89. Gába A, Kapuš S, Pelclová J, et al. The relationship between accelerometer-determined physical activity (PA) and body composition and bone mineral density (BMD) in postmenopausal women. Arch Gerontol Geriatr. 2012;54(3):e315–22.

    Article  PubMed  Google Scholar 

  90. Park H, Togo F, Watanabe E, et al. Relationship of bone health to yearlong physical activity in older Japanese adults: cross-sectional data from the Nakanojo study. Osteoporosis Int. 2007;18:285–93.

    Article  CAS  Google Scholar 

  91. Shephard RJ, Park H, Park S et al. Objectively measured physical activity and calcaneal bone health in older Japanese adults: dose/response relationships in longitudinal data from the Nakanojo study. J Am Geriatr Soc. 2016 (in press).

    Google Scholar 

  92. Kitagawa J, Omasu F, Nakahara Y. Effect of daily walking steps on ultrasound parameters of the calcaneus in elderly Japanese women. Osteoporosis Int. 2003;14(3):219–24.

    CAS  Google Scholar 

  93. Vainionpää A, Korpelainen R, Vihriälä E, et al. Intensity of exercise is associated with bone density change in premenopausal women. Osteoporosis Int. 2006;17:455–63.

    Article  Google Scholar 

  94. Janz KF, Burns TL, Torner JC, et al. Physical activity and bone measures in young children: the Iowa bone development study. Pediatrics. 2001;107:1387–93.

    Article  CAS  PubMed  Google Scholar 

  95. Park H, Park S, Shephard RJ, et al. Year-long physical activity and sarcopenia in older adults: the Nakanojo study. Eur J Appl Physiol. 2010;109(5):953–61.

    Article  PubMed  Google Scholar 

  96. Shephard RJ, Park H, Park S, et al. Objectively measured physical activity and progressive loss of lean tissue in older Japanese adults: Longitudinal data from the Nakanojo study. J Am Geriatr Soc. 2013;61(11):1887–93.

    Article  PubMed  Google Scholar 

  97. Abe T, Mitsukawa N, Thiebaud RS, et al. Lower body site-specific sarcopenia and accelerometer-determined moderate and vigorous physical activity: the Hiregasaki study. Aging Clin Exp Res. 2012;24(6):657–62.

    PubMed  Google Scholar 

  98. Ogawa M, Mitsuwaka N, Loftin M, et al. Association of vigorous physical activity with age-related, site-specific loss of thigh muscle in women: the HIREGASAKI study. J Trainol. 2012;1:6–9.

    Article  Google Scholar 

  99. Yasunaga A, Togo F, Watanabe E, et al. Year-long physical activity and health-related quality of life in older Japanese adults: the Nakanojo study. J Aging Phys Act. 2006;14:288–301.

    PubMed  Google Scholar 

  100. Yasunaga A, Togo F, Park H, et al. Interactive effects of the intensity and volume of physical activity on health-related quality of life in older adults: the Nakanojo study. J Aging Phys Act. 2008;20:S184.

    Google Scholar 

  101. Vallance JK, Boyle T, Courneya KS, et al. Associations of objectively assessed physical activity and sedentary time with health-related quality of life among colon cancer survivors. Cancer. 2014;120:2919–26.

    Article  PubMed  Google Scholar 

  102. Gerdhem P, Dencker M, Ringsberg K, et al. Accelerometer-measured daily physical activity among octogenerians: results and associations to other indices of physical performance and bone density. Eur J Appl Physiol. 2008;102(2):173–80.

    Article  PubMed  Google Scholar 

  103. Daly RM, Ahlkborg HG, Ringsberg K, et al. Association between changes in habitual physical activity and changes in bone density, muscle strength, and functional performance in elderly men and women. J Am Geriatr Soc. 2008;56(12):2252–60.

    Article  PubMed  Google Scholar 

  104. Park S, Park H, Togo F, et al. Yearlong physical activity and metabolic syndrome in older Japanese adults: cross-sectional data from the Nakanojo study. J Gerontol A Biol Sci Med Sci. 2008;63:1119–23.

    Article  PubMed  Google Scholar 

  105. Morgan P, Gildiner M, Wright GR. Smoking reduction in adults who take up exercise: a survey of a running club. CAHPER J. 1976;42(5):39–43.

    Google Scholar 

  106. Yamaji K, Shephard RJ. Longevity and causes of death of athletes: a review of the literature. J Hum Ergol. 1977;6:13–25.

    Google Scholar 

  107. Hill AB. Principles of medical statistics. 9th ed. New York, NY: University Press; 1971.

    Google Scholar 

  108. Pope CA, Burnett RT, Turner MC, et al. Lung cancer and cardiovascular disease mortality associated with ambient air pollution and cigarette smoke: shape of the exposure-response relationship. Environ Health Perspect. 2011;119:1616–21.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Schnor P, Jensen JS, Scharling H, et al. Coronary heart disease risk factors ranked by importance for the individual and the community. Eur Heart J. 2002;23:620–6.

    Article  Google Scholar 

  110. Ballard-Barbash R, Schatzkin A, Albanes D, et al. Physical activity and risk of large bowel cancer in the Framingham study. Cancer Res. 1990;50:3610–3.

    CAS  PubMed  Google Scholar 

  111. Cox DR, Wermuth N. Multivariate dependencies: models, analysis and interpretation. London: Chapman Hall; 1996.

    Google Scholar 

  112. Howick J, Glasziou P, Aronson JK. The evolution of evidence hierarchies: what can Bradford Hill’s “guidelines for causation” contribute? J R Soc Med. 2009;102(5):186–94.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy J. Shephard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shephard, R.J. (2016). Physical Activity and Optimal Health: The Challenge to Epidemiology. In: Shephard, R., Tudor-Locke, C. (eds) The Objective Monitoring of Physical Activity: Contributions of Accelerometry to Epidemiology, Exercise Science and Rehabilitation. Springer Series on Epidemiology and Public Health. Springer, Cham. https://doi.org/10.1007/978-3-319-29577-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29577-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29575-6

  • Online ISBN: 978-3-319-29577-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics