Skip to main content

The Antiparticle Filter—An Adaptive Nonlinear Estimator

  • Chapter
  • First Online:
Robotics Research

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 100))

  • 4126 Accesses

Abstract

We introduce the antiparticle filter, AF, a new type of recursive Bayesian estimator that is unlike either the extended Kalman Filter, EKF, unscented Kalman Filter, UKF or the particle filter PF. We show that for a classic problem of robot localization the AF can substantially outperform these other filters in some situations. The AF estimates the posterior distribution as an auxiliary variable Gaussian which gives an analytic formula using no random samples. It adaptively changes the complexity of the posterior distribution as the uncertainty changes. It is equivalent to the EKF when the uncertainty is low while being able to represent non-Gaussian distributions as the uncertainty increases. The computation time can be much faster than a particle filter for the same accuracy. We have simulated comparisons of two types of AF to the EKF, the iterative EKF, the UKF, an iterative UKF, and the PF demonstrating that AF can reduce the error to a consistent accurate value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The iterative UKF is an iterative version of the UKF similar to the IEKF.

  2. 2.

    We use the threshold 0.01 in our simulations.

  3. 3.

    We use 1.0 for this threshold.

  4. 4.

    We used N = 21.

  5. 5.

    Λ is a matrix from the λ  x spaces and x vector Γ is a symmetric matrix wrt λ.

  6. 6.

    α and β are matrices from the λ  x spaces.

  7. 7.

    As in Thrun pp. 220–228 (UKF), 250–252 (PF) and 110 (low variance sampling).

  8. 8.

    Q was 10−5, 10−4, or 10−3 along the diagonal.

  9. 9.

    The simulated distance units are arbitrary but can be thought of as meters while the angles are in radians.

References

  1. R. Kalman, A new approach filtering and prediction problems. Trans. ASME J. Basic Eng. 82(1), 35–45 (1960)

    Article  Google Scholar 

  2. L. Ljung, Asymptotic behavior of the extended kalman filter as a parameter estimator for linear systems. IEEE Trans. Autom. Control 24(1), 36–51 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Huang, G. Dissanayake, Convergence and consistency analysis for extended kalman filter based slam. IEEE Trans. Robot. Autom. 23(5), 1036–1050 (2007)

    Article  Google Scholar 

  4. K. Reif, S. Gunther, E. Yaz, R. Unbehauen, Stochastic stability of the discrete-time extended kalman filter. IEEE Trans. Autom. Control 44(4), 714–728 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. K. Xiong, H. Zhang, L. Liu, Adaptive robust extended kalman filter for nonlinear stochastic systems. Control Theory Appl. IET 2(3), 239–250 (2008)

    Article  MathSciNet  Google Scholar 

  6. W. Zhang, B.S. Chen, C. Tseng, Robust H filtering for nonlinear stochastic systems. IEEE Trans. Signal Process. 53(2), 589–598 (2005)

    Article  MathSciNet  Google Scholar 

  7. L. Jetto, S. Longhi, G. Venturini, Development and experimental validation of an adaptive extended kalman filter for the localization of mobile robots. IEEE Trans. Robot. Autom. 15(2), 219–229 (1999)

    Article  Google Scholar 

  8. S.J. Julier, J.K. Uhlmann, Unscented filtering and nonlinear estimation, in Proceedings of the IEEE, vol. 92 (2004), pp. 401–422

    Google Scholar 

  9. E. Wan, R. Van Der Merwe, The unscented kalman filter for nonlinear estimation, in Adaptive Systems for Signal Processing, Communications, and Control Symposium 2000. AS-SPCC. The IEEE 2000, vol. 1, no. 1 (2000), pp. 153–158

    Google Scholar 

  10. K. Xiong, H. Zhanga, C. Chan, Performance evaluation of UKF-based nonlinear filtering. Automatica 42(2), 261–270 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. K. Ito, K. Xiong, Gaussian filters for nonlinear filtering problems. IEEE Trans. Autom. Control 45(5), 910–927 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. T. Lefebvre, H. Bruyninck, J.D. Schutter, Kalman filters for nonlinear systems: a comparison of performance. Int. J. Control 77(7), 639–653 (2004)

    Article  MATH  Google Scholar 

  13. I. Arasaratnam, S. Haykin, R.J. Elliott, Discrete-time nonlinear filtering algorithms using gauss hermite quadrature, in Proceedings of the IEEE, vol. 95 (2007), pp. 953–977

    Google Scholar 

  14. J. Clark, R. Vinter, M. Yaqoob, Shifted rayleigh filter: a new algorithm for bearings-only tracking. IEEE Trans. Aerosp. Electr. Syst. 43(4), 1373–1384 (2007)

    Article  Google Scholar 

  15. M. Norgaard, N.K. Poulsen, O. Ravn, New developments in state estimation for nonlinear systems. Automatica 36, 1627–1638 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. B. Bell, F. Cathey, The iterated kalman filter update as a gauss-newton method. IEEE Trans. Autom. Control 38(2), 294–297 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Y. Bar-Shalom, T. Fortmann, Tracking and Data Association (Academic Press, New York, NY, 1987)

    Google Scholar 

  18. N. Gordon, D. Salmond, A. Smith, Novel approach to nonlinear/nongaussian bayesian state estimation, in Proceedings of the IEEE for Radar and Signal Processing, vol. 140 (1993), pp. 107–113

    Google Scholar 

  19. M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp, A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Trans. Signal Process. 50(2), 174–188 (2002)

    Article  Google Scholar 

  20. J. Carpenter, P. Clifford, P. Fearnhead, Improved particle filters for nonlinear problems. IEEE Proc. Radar Sonar Navig. 146(1), 2–7 (1999)

    Article  Google Scholar 

  21. F. Dellaert, D. Fox, W. Burgard, S. Thrun, Monte carlo localization for mobile robots, in Proceedings of the IEEE International Conference on Robotics and Automation (1999), pp. 1322–1328

    Google Scholar 

  22. M. Montemerlo et al., FastSLAM: A factored solution to the simultaneous localization and mapping problem, in Proceedings of the National Conference on Artificial Intelligence (AAAI-02) (Edmonton, Canada, 2002)

    Google Scholar 

  23. G. Grisetti, C. Stachniss, W. Burgard, Improving grid-based slam with rao-blackwellized particle filters by adaptive proposals and selective resampling, in Proceedings of the IEEE Int. Conference on Robotics and Automation (2005), pp. 2432–2437

    Google Scholar 

  24. J. Kotecha, P. Djuric, Gaussian particle filtering. IEEE Trans. Signal Process. 51(10), 2592–2601 (2003)

    Article  MathSciNet  Google Scholar 

  25. H. Durrant-Whyte, S. Majumder, S. Thrun, M. de Battista1, S. Scheding, A bayesian algorithm for simultaneous localisation and map building, in Springer Tracts in Advanced Robotics, vol. 6 (2003), pp. 49–60

    Google Scholar 

  26. Y. Bresler, A. Macovski, Exact maximum likelihood parameter estimation of superimposed exponential signals in noise. IEEE Trans. Acoust. Speech Signal Process. 34(5), 1081–1089 (1986)

    Article  Google Scholar 

  27. K.R. Muske, J.B. Rawlings, Nonlinear Moving Horizon State Estimation (Kluwer, 1995)

    Google Scholar 

  28. C. Rao, J. Rawlings, D. Mayne, Constrained state estimation for nonlinear discrete-time systems: stability and moving horizon approximations. IEEE Trans. Autom. Control 48(2), 246–258 (2003)

    Article  MathSciNet  Google Scholar 

  29. J. Folkesson, H.I. Christensen, Graphical SLAM: a self-correcting map, in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA04), vol. 1 (2004)

    Google Scholar 

  30. F. Dellaert, Square root sam: Simultaneous location and mapping via square root information smoothing, in Robotics: Science and Systems (2005)

    Google Scholar 

  31. M. Briers, A. Doucet, S. Singh, Sequential auxiliary particle belief propagation, in Proceedings of the IEEE International Conference on Information Fusion, vol. 1 (2005), pp. 1–8

    Google Scholar 

  32. J. Folkesson, Robustness of the quadratic antiparticle filter for robot localization, in Proceedings of the European Conference on Mobile Robots, vol. 1 (2011)

    Google Scholar 

  33. S. Thrun, W. Burgard, D. Fox, Probalistic Robotics (MIT Press, 2005)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the SSF through its Centre for Autonomous Systems (CAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Folkesson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Folkesson, J. (2017). The Antiparticle Filter—An Adaptive Nonlinear Estimator. In: Christensen, H., Khatib, O. (eds) Robotics Research . Springer Tracts in Advanced Robotics, vol 100. Springer, Cham. https://doi.org/10.1007/978-3-319-29363-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29363-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29362-2

  • Online ISBN: 978-3-319-29363-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics