Skip to main content

Cyclodextrins in Ocular Drug Delivery

  • Chapter
  • First Online:
Nano-Biomaterials For Ophthalmic Drug Delivery

Abstract

Cyclodextrins are a group of water-insoluble, donut-shaped, naturally occurring cyclic oligosaccharides that are produced as a result of the bacterial breakdown of α-d-glucose polymers, such as cellulose. They are inactive molecules that do not display any innate biological activity. The ocular delivery of certain drugs is affected not only by the drug’s physicochemical properties but also by the anatomical barriers of the eye. Drug-cyclodextrin complexes, formed by the physical occlusion of the torus cavity by the drug molecule, redress this issue. Thus, the ocular delivery of glaucoma drugs (e.g., carbonic anhydrase inhibitors, prostaglandin derivatives, pilocarpine), nonsteroidal anti-inflammatory drugs (e.g., indomethacin), and antifungal drugs (e.g., voriconazole) is enhanced by such inclusion complexes. Additionally, specific drug delivery systems (e.g., hydrogels, mucoadhesives, ocular gels) are harnessed to deliver the drug payload from the drug-cyclodextrin complex in a tunable fashion. This chapter seeks to elaborate on the chemical, biological, and pharmaceutical aspects governing cyclodextrins in the context of ocular drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu L, Guo Q-X (2002) The driving forces in the inclusion complexation of cyclodextrins. J Incl Phenom Macrocycl Chem 42(1–2):1–14

    Article  CAS  Google Scholar 

  2. Hedges AR (1998) Industrial applications of cyclodextrins. Chem Rev 98(5):2035–2044

    Article  CAS  PubMed  Google Scholar 

  3. Urtti A, Salminen L (1993) Minimizing systemic absorption of topically administered ophthalmic drugs. Surv Ophthalmol 37(6):435–456

    Article  CAS  PubMed  Google Scholar 

  4. Le Bourlais C, Acar L et al (1998) Ophthalmic drug delivery systems—recent advances. Prog Retin Eye Res 17(1):33–58

    Article  CAS  PubMed  Google Scholar 

  5. Loftsson T, Brewster ME (2011) Pharmaceutical applications of cyclodextrins: effects on drug permeation through biological membranes. J Pharm Pharmacol 63(9):1119–1135

    Article  CAS  PubMed  Google Scholar 

  6. Uekama K, Adachi H et al (1992) Improved transdermal delivery of prostaglandin e1 through hairless mouse skin: combined use of carboxymethyl-ethyl-β-cyclodextrin and penetration enhancers. J Pharm Pharmacol 44(2):119–121

    Article  CAS  PubMed  Google Scholar 

  7. Stella VJ, He Q (2008) Cyclodextrins. Toxicol Pathol 36:30–42

    Article  CAS  PubMed  Google Scholar 

  8. Arima H, Motoyama K, Irie T (eds) (2011) Recent findings on safety profiles of cyclodextrins, cyclodextrin conjugates, and polypseudorotaxanes. Cyclodextrins in pharmaceutics, cosmetics, and biomedicine: current and future industrial applications. Wiley, Hoboken

    Google Scholar 

  9. Alvarez-Lorenzo C, Yañez F et al (2010) Ocular drug delivery from molecularly-imprinted contact lenses. J drug deliv sci technol 20(4):237–248

    Article  CAS  Google Scholar 

  10. Tieppo A, White C et al (2012) Sustained in vivo release from imprinted therapeutic contact lenses. J Control Release 157(3):391–397

    Article  CAS  PubMed  Google Scholar 

  11. Alvarez-Lorenzo C, Hiratani H et al (2006) Contact lenses for drug delivery. Am J Drug Deliv 4(3):131–151

    Article  CAS  Google Scholar 

  12. Rosa dos Santos J-F, Alvarez-Lorenzo C et al (2009) Soft contact lenses functionalized with pendant cyclodextrins for controlled drug delivery. Biomaterials 30(7):1348–1355

    Article  CAS  Google Scholar 

  13. dos Santos J-FR, Couceiro R et al (2008) Poly(hydroxyethyl methacrylate-co-methacrylated-β-cyclodextrin) hydrogels: synthesis, cytocompatibility, mechanical properties and drug loading/release properties. Acta Biomater 4(3):745–755

    Article  PubMed  Google Scholar 

  14. Glisoni RJ, García-Fernández MJ et al (2013) Β-cyclodextrin hydrogels for the ocular release of antibacterial thiosemicarbazones. Carbohydr Polym 93(2):449–457

    Article  CAS  PubMed  Google Scholar 

  15. Moglioni AG, Alvarez-Lorenzo C et al (2013) Romina j. Glisoni, maría j. García-fernández c, marylú pino d, gabriel gutkind b, d. Carbohydr Polym 93:449–457

    Article  PubMed  Google Scholar 

  16. Glisoni RJ, Chiappetta DA et al (2012) Novel 1-indanone thiosemicarbazone antiviral candidates: aqueous solubilization and physical stabilization by means of cyclodextrins. Pharm Res 29(3):739–755

    Article  CAS  PubMed  Google Scholar 

  17. Glisoni RJ, Cuestas ML et al (2012) Antiviral activity against the hepatitis c virus (hcv) of 1-indanone thiosemicarbazones and their inclusion complexes with hydroxypropyl-β-cyclodextrin. Eur J Pharm Sci 47(3):596–603

    Article  CAS  PubMed  Google Scholar 

  18. Supuran CT, Scozzafava A (2007) Carbonic anhydrases as targets for medicinal chemistry. Bioorg Med Chem 15(13):4336–4350

    Article  CAS  PubMed  Google Scholar 

  19. Sigurdsson HH, Stefánsson E et al (2005) Cyclodextrin formulation of dorzolamide and its distribution in the eye after topical administration. J Control Release 102(1):255–262

    Article  CAS  PubMed  Google Scholar 

  20. Gudmundsdottir BS, Petursdottir D et al (2014) Γ-cyclodextrin nanoparticle eye drops with dorzolamide: effect on intraocular pressure in man. J Ocul Pharmacol Ther 30(1):35–41

    Article  CAS  PubMed  Google Scholar 

  21. Jóhannesson G, Moya-Ortega MD et al (2014) Dorzolamide cyclodextrin nanoparticle suspension eye drops and trusopt in rabbit. J Ocul Pharmacol Ther 30(6):464–467

    Article  PubMed  Google Scholar 

  22. Loftsson T, Jansook P et al (2012) Topical drug delivery to the eye: dorzolamide. Acta Ophthalmol 90(7):603–608

    Article  CAS  PubMed  Google Scholar 

  23. Loftsson T, Friðriksdóttir H et al (1994) 2-hydroxypropyl-β-cyclodextrin in topical carbonic anhydrase inhibitor formulations. Eur J Pharm Sci 1(4):175–180

    Article  CAS  Google Scholar 

  24. Mora MJ, Tártara LI et al (2013) Characterization, dissolution and in vivo evaluation of solid acetazolamide complexes. Carbohydr Polym 98(1):380–390

    Article  CAS  PubMed  Google Scholar 

  25. García-Fernández MJ, Tabary N et al (2013) Poly-(cyclo)dextrins as ethoxzolamide carriers in ophthalmic solutions and in contact lenses. Carbohydr Polym 98(2):1343–1352

    Article  PubMed  Google Scholar 

  26. Zhang Y, Ren K et al (2013) Development of inclusion complex of brinzolamide with hydroxypropyl-β-cyclodextrin. Carbohydr Polym 98(1):638–643

    Article  CAS  PubMed  Google Scholar 

  27. Halim Mohamed MA, Mahmoud AA (2011) Formulation of indomethacin eye drops via complexation with cyclodextrins. Curr Eye Res 36(3):208–216

    Article  CAS  PubMed  Google Scholar 

  28. Bucolo C, Melilli B et al (2011) Ocular pharmacokinetics profile of different indomethacin topical formulations. J Ocul Pharmacol Ther 27(6):571–576

    Article  CAS  PubMed  Google Scholar 

  29. Freedman KA, Klein JW et al (1993) Beta-cyclodextrins enhance bioavailability of pilocarpine. Curr Eye Res 12(7):641–647

    Article  CAS  PubMed  Google Scholar 

  30. Loftsson T (1995) The effect of polymers on cyclodextrin complexation. Abstracts of papers, The American Chemical Society, ACS, PO BOX 57136, Washington, DC 20037-0136

    Google Scholar 

  31. Suhonen P, Järvinen T et al (1995) Ocular absorption and irritation of pilocarpine prodrug is modified with buffer, polymer, and cyclodextrin in the eyedrop. Pharm Res 12(4):529–533

    Article  CAS  PubMed  Google Scholar 

  32. Loftsson T, Stefánsson E (1997) Effect of cyclodextrins on topical drug delivery to the eye. Drug Dev Ind Pharm 23(5):473–481

    Article  CAS  Google Scholar 

  33. Loftssona T, Järvinen T (1999) Cyclodextrins in ophthalmic drug delivery. Adv Drug Deliv Rev 36(1):59–79

    Article  CAS  PubMed  Google Scholar 

  34. Ishikawa H, Yoshitomi T et al (2002) Pharmacological effects of latanoprost, prostaglandin e2, and f2 α on isolated rabbit ciliary artery. Graefes Arch Clin Exp Ophthalmol 240(2):120–125

    Article  CAS  PubMed  Google Scholar 

  35. Gonzalez JR, Baiza-Duran L et al (2007) Comparison of the stability, efficacy, and adverse effect profile of the innovator 0.005 % latanoprost ophthalmic solution and a novel cyclodextrin-containing formulation. J Clin Pharmacol 47(1):121–126

    Article  CAS  PubMed  Google Scholar 

  36. Hariprasad SM, Mieler WF et al (2008) Voriconazole in the treatment of fungal eye infections: a review of current literature. Br J Ophthalmol 92(7):871–878

    Article  CAS  PubMed  Google Scholar 

  37. Prajna NV, Mascarenhas J et al (2010) Comparison of natamycin and voriconazole for the treatment of fungal keratitis. Arch Ophthalmol 128(6):672–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dupuis A, Tournier N et al (2009) Preparation and stability of voriconazole eye drop solution. Antimicrob Agents Chemother 53(2):798–799

    Article  CAS  PubMed  Google Scholar 

  39. Pawar P, Kashyap H et al (2013) Hpβcd-voriconazole in situ gelling system for ocular drug delivery: in vitro, stability, and antifungal activities assessment. BioMed Res Int 2013(73):1–9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sridhar Anand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Anand, S., Braga, V.M.L. (2016). Cyclodextrins in Ocular Drug Delivery. In: Pathak, Y., Sutariya, V., Hirani, A. (eds) Nano-Biomaterials For Ophthalmic Drug Delivery. Springer, Cham. https://doi.org/10.1007/978-3-319-29346-2_12

Download citation

Publish with us

Policies and ethics