Skip to main content

Congenital Anomalies of the Kidney and Urinary Tract: An Overview

  • Chapter
  • First Online:
Congenital Anomalies of the Kidney and Urinary Tract

Abstract

Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause of all birth defects As a group, they are the cause of most cases of end-stage renal disease (ESRD) in children. Additionally, they are the most frequent malformations detected by prenatal ultrasound. CAKUT occur in association with nonrenal malformations in about 30 % of cases. In the majority of patients, CAKUT are sporadic; however, mutations in several renal development genes have been identified as etiologic factors. The widespread use and increased sensitivity of fetal ultrasound in identifying CAKUT has led to the frequent diagnosis of these anomalies in utero. It is important to diagnose and initiate therapy in affected patients to minimize renal damage and prevent or delay the onset ESRD. In this chapter, I will present an overview of issues related to the etiology, pathobiology, diagnosis, and clinical management of CAKUT, which will serve as a foundation for more detailed presentation in subsequent chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CAKUT:

Congenital anomalies of the kidney and urinary tract

CKD:

Chronic kidney disease

ESRD:

End-stage renal disease

VCUG:

Voiding cystourethrogram

VUR:

Vesicoureteral reflux

References

  1. Loane M, Dolk H, Kelly A, Teljeur C, Greenlees R, Densem J, et al. Paper 4: EUROCAT statistical monitoring: identification and investigation of ten year trends of congenital anomalies in Europe. Birth Defects Res A Clin Mol Teratol. 2011;91 Suppl 1:S31–43.

    Article  CAS  PubMed  Google Scholar 

  2. Ardissino G, Dacco V, Testa S, Bonaudo R, Claris-Appiani A, Taioli E, et al. Epidemiology of chronic renal failure in children: data from the ItalKid project. Pediatrics. 2003;111(4 Pt 1):e382–7. Epub 2003/04/03.eng.

    Article  PubMed  Google Scholar 

  3. Wiesel A, Queisser-Luft A, Clementi M, Bianca S, Stoll C. Prenatal detection of congenital renal malformations by fetal ultrasonographic examination: an analysis of 709,030 births in 12 European countries. Eur J Med Genet. 2005;48:131–44.

    Article  CAS  PubMed  Google Scholar 

  4. Piscione TD, Rosenblum ND. The malformed kidney: disruption of glomerular and tubular development. Clin Genet. 1999;56:343–58.

    Article  Google Scholar 

  5. Weber S, Moriniere V, Knuppel T, Charbit M, Dusek J, Ghiggeri GM, et al. Prevalence of mutations in renal developmental genes in children with renal hypodysplasia: results of the ESCAPE study. J Am Soc Nephrol. 2006;17:2864–70.

    Article  CAS  PubMed  Google Scholar 

  6. Salomon R, Tellier AL, Attie-Bitach T, Amiel J, Vekemans M, Lyonnet S, et al. PAX2 mutations in oligomeganephronia. Kidney Int. 2001;59:457–62.

    Article  CAS  PubMed  Google Scholar 

  7. Ulinski T, Lescure S, Beaufils S, Guigonis V, Decramer S, Morin D, et al. Renal phenotypes related to hepatocyte nuclear factor-1beta (TCF2) mutations in a pediatric cohort. J Am Soc Nephrol. 2006;17:497–503.

    Article  CAS  PubMed  Google Scholar 

  8. Roodhooft AM, Jason MD, Birnholz JC, Holmes LB. Familial nature of congenital absence and severe dysgenesis of both kidneys. N Eng J Med. 1984;310:1341–4.

    Article  CAS  Google Scholar 

  9. Bulum B, Ozcakar ZB, Ustuner E, Dusunceli E, Kavaz A, Duman D, et al. High frequency of kidney and urinary tract anomalies in asymptomatic first-degree relatives of patients with CAKUT. Pediatr Nephrol. 2013;28:2143–7.

    Article  PubMed  Google Scholar 

  10. Rosenblum ND. Developmental biology of the human kidney. Semin Fetal Neonatal Med. 2008;13:125–32. Epub 2007/12/22.eng.

    Article  PubMed  Google Scholar 

  11. Pachnis V, Mankoo B, Costantini F. Expression of the c-ret proto-oncogene during mouse embryogenesis. Development. 1993;119:1005–17.

    CAS  PubMed  Google Scholar 

  12. Hellmich HL, Kos L, Cho ES, Mahon KA, Zimmer A. Embryonic expression of glial cell-line derived neurotrophic factor (GDNF) suggests multiple developmental roles in neural differentiation and epithelial-mesenchymal interactions. Mech Dev. 1996;54:95–105.

    Article  CAS  PubMed  Google Scholar 

  13. Chatterjee R, Ramos E, Hoffman M, VanWinkle J, Martin DR, Davis TK, et al. Traditional and targeted exome sequencing reveals common, rare and novel functional deleterious variants in RET-signaling complex in a cohort of living US patients with urinary tract malformations. Hum Genet. 2012;131:1725–38. Pubmed Central PMCID: 3551468, Epub 2012/06/26. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Skinner MA, Safford SD, Reeves JG, Jackson ME, Freemerman AJ. Renal aplasia in humans is associated with RET mutations. Am J Hum Genet. 2008;82:344–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang D, Zhang J, Chen C, Xie M, Sperling S, Fang F, et al. BMPR IA downstream genes related to VSD. Pediatr Res. 2008;63:602–6.

    Article  CAS  PubMed  Google Scholar 

  16. Jeanpierre C, Mace G, Parisot M, Moriniere V, Pawtowsky A, Benabou M, et al. RET and GDNF mutations are rare in fetuses with renal agenesis or other severe kidney development defects. J Med Genet. 2011;48:497–504. Epub 2011/04/15.eng.

    Article  CAS  PubMed  Google Scholar 

  17. Mackie GG, Stephens FD. Duplex kidneys: a correlation of renal dysplasia with position of the ureteral orifice. J Urol. 1975;114:274–80.

    CAS  PubMed  Google Scholar 

  18. Bertoli-Avella AM, Conte ML, Punzo F, de Graaf BM, Lama G, La Manna A, et al. ROBO2 gene variants are associated with familial vesicoureteral reflux. J Am Soc Nephrol. 2008;19:825–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Piper M, Georgas K, Yamada T, Little M. Expression of the vertebrate Slit gene family and their putative receptors, the Robo genes, in the developing murine kidney. Mech Dev. 2000;94:213–7.

    Article  CAS  PubMed  Google Scholar 

  20. Grieshammer U, Le M, Plump AS, Wang F, Tessier-Lavigne M, Martin GR. SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site. Dev Cell. 2004;6:709–17.

    Article  CAS  PubMed  Google Scholar 

  21. Weaver RG, Cashwell LF, Lorentz W, Whiteman D, Geisinger KR, Ball M. Optic nerve coloboma associated with renal disease. Am J Med Genet. 1988;29:597–605.

    Article  CAS  PubMed  Google Scholar 

  22. Porteous S, Torban E, Cho N-P, Cunliffe H, Chua L, McNoe L, et al. Primary renal hypoplasia in humans and mice with PAX2 mutations: evidence of increased apoptosis in fetal kidneys of Pax21Neu +/− mutant mice. Hum Mol Genet. 2000;9:1–11.

    Article  CAS  PubMed  Google Scholar 

  23. Dziarmaga A, Eccles M, Goodyer P. Suppression of ureteric bud apoptosis rescues nephron endowment and adult renal function in Pax2 mutant mice. J Am Soc Nephrol. 2006;17:1568–75.

    Article  CAS  PubMed  Google Scholar 

  24. Nyengaard JR, Bendtsen TF. Glomerular number and size in relation to age, kidney weight, and body surface in normal man. Anat Rec. 1992;232:194–201.

    Article  CAS  PubMed  Google Scholar 

  25. Quinlan J, Lemire M, Hudson T, Qu H, Benjamin A, Roy A, et al. A common variant of the PAX2 gene is associated with reduced newborn kidney size. J Am Soc Nephrol. 2007;18:1915–21.

    Article  CAS  PubMed  Google Scholar 

  26. Kohlhase J, Wischermann A, Reichenbach H, Froster U, Engel W. Mutations in the SALL1 putative transcription factor gene cause Townes-Brocks syndrome. Nat Genet. 1998;18:81–3.

    Article  CAS  PubMed  Google Scholar 

  27. Nishinakamura R, Matsumoto Y, Nakao K, Nakamura K, Sato A, Copeland NG, et al. Murine homolog of SALL1 is essential for ureteric bud invasion in kidney development. Development. 2001;128:3105–15.

    CAS  PubMed  Google Scholar 

  28. Townes PL, Brocks ER. Hereditary syndrome of imperforate anus with hand, foot, and ear anomalies. J Pediatr. 1972;81:321–6.

    Article  CAS  PubMed  Google Scholar 

  29. O'Callaghan M, Young ID. The Townes-Brocks syndrome. J Med Genet. 1990;27:457–61.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ruf RG, Xu PX, Silvius D, Otto EA, Beekmann F, Muerb UT, et al. SIX1 mutations cause branchio-oto-renal syndrome by disruption of EYA1-SIX1-DNA complexes. Proc Natl Acad Sci U S A. 2004;101:8090–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sajithlal G, Zou D, Silvius D, Xu PX. Eya1 acts as a critical regulator for specifying the metanephric mesenchyme. Dev Biol. 2005;284:323–36.

    Article  CAS  PubMed  Google Scholar 

  32. Xu PX, Adams J, Peters H, Brown MC, Heaney S, Maas R. Eya1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nat Genet. 1999;23:113–7. Epub 1999/09/02.eng.

    Article  CAS  PubMed  Google Scholar 

  33. Ozaki H, Watanabe Y, Ikeda K, Kawakami K. Impaired interactions between mouse Eyal harboring mutations found in patients with branchio-oto-renal syndrome and Six, Dach, and G proteins. J Hum Genet. 2002;47:107–16. Epub 2002/04/13.eng.

    Article  CAS  PubMed  Google Scholar 

  34. Abdelhak S, Kalatzis V, Heilig R, Compain S, Samson D, Vincent C, et al. A human homologue of the Drosophila eyes absent gene underlies Branchio-Oto-Renal (BOR) syndrome and identifies a novel gene family. Nat Gen. 1997;15:157–64.

    Article  CAS  Google Scholar 

  35. Chen A, Francis M, Ni L, Cremers CW, Kimberling WJ, Sato Y, et al. Phenotypic manifestations of branchio-oto-renal syndrome. Am J Med Genet. 1995;58:365–70.

    Article  CAS  PubMed  Google Scholar 

  36. Chang EH, Menezes M, Meyer NC, Cucci RA, Vervoort VS, Schwartz CE, et al. Branchio-oto-renal syndrome: the mutation spectrum in EYA1 and its phenotypic consequences. Hum Mutat. 2004;23:582–9.

    Article  CAS  PubMed  Google Scholar 

  37. Handrigan GR, Chitayat D, Lionel AC, Pinsk M, Vaags AK, Marshall CR, et al. Deletions in 16q24.2 are associated with autism spectrum disorder, intellectual disability and congenital renal malformation. J Med Genet. 2013;50:163–73. Epub 2013/01/22.eng.

    Article  CAS  PubMed  Google Scholar 

  38. Sanna-Cherchi S, Kiryluk K, Burgess KE, Bodria M, Sampson MG, Hadley D, et al. Copy-number disorders are a common cause of congenital kidney malformations. Am J Hum Genet. 2012;91:987–97. Pubmed Central PMCID: 3516596, Epub 2012/11/20. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Denton KM. Can adult cardiovascular disease be programmed in utero? J Hypertens. 2006;24:1245–7. Epub 2006/06/24.eng.

    Article  CAS  PubMed  Google Scholar 

  40. Wlodek ME, Mibus A, Tan A, Siebel AL, Owens JA, Moritz KM. Normal lactational environment restores nephron endowment and prevents hypertension after placental restriction in the rat. J Am Soc Nephrol. 2007;18:1688–96.

    Article  CAS  PubMed  Google Scholar 

  41. Zohdi V, Moritz KM, Bubb KJ, Cock ML, Wreford N, Harding R, et al. Nephrogenesis and the renal renin-angiotensin system in fetal sheep: effects of intrauterine growth restriction during late gestation. Am J Physiol Regul Integr Comp Physiol. 2007;293:R1267–73. Epub 2007/06/22.eng.

    Article  CAS  PubMed  Google Scholar 

  42. Abdel-Hakeem AK, Henry TQ, Magee TR, Desai M, Ross MG, Mansano RZ, et al. Mechanisms of impaired nephrogenesis with fetal growth restriction: altered renal transcription and growth factor expression. Am J Obstet Gynecol. 2008;199:252 e1–7. Epub 2008/07/22.eng.

    Article  Google Scholar 

  43. Gilbert JS, Lang AL, Grant AR, Nijland MJ. Maternal nutrient restriction in sheep: hypertension and decreased nephron number in offspring at 9 months of age. J Physiol. 2005;565:137–47. Epub 2005/03/26. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Welham SJ, Riley PR, Wade A, Hubank M, Woolf AS. Maternal diet programs embryonic kidney gene expression. Physiol Genomics. 2005;22:48–56. Epub 2005/04/14. eng.

    Article  CAS  PubMed  Google Scholar 

  45. Amri K, Freund N, Vilar J, Merlet-Benichou C, Lelievre-Pegorier M. Adverse effects of hyperglycemia on kidney development in rats: in vivo and in vitro studies. Diabetes. 1999;48:2240–5. Epub 1999/10/27.eng.

    Article  CAS  PubMed  Google Scholar 

  46. Cooper WO, Hernandez-Diaz S, Arbogast PG, Dudley JA, Dyer S, Gideon PS, et al. Major congenital malformations after first-trimester exposure to ACE inhibitors. N Engl J Med. 2006;354:2443–51.

    Article  CAS  PubMed  Google Scholar 

  47. Battin M, Albersheim S, Newman D. Congenital genitourinary tract abnormalities following cocaine exposure in utero. Am J Perinatol. 1995;12:425–8. Epub 1995/11/01.eng.

    Article  CAS  PubMed  Google Scholar 

  48. Taylor CL, Jones KL, Jones MC, Kaplan GW. Incidence of renal anomalies in children prenatally exposed to ethanol. Pediatrics. 1994;94:209–12. Epub 1994/08/01.eng.

    CAS  PubMed  Google Scholar 

  49. Potter EL. Normal and abnormal development of the kidney. Chicago: Year Book Medical Publishers Inc; 1972. 305 p.

    Google Scholar 

  50. Keller G, Zimmer G, Mall G, Ritz E, Amann K. Nephron number in patients with primary hypertension. New Engl J Med. 2003;348:101–8.

    Article  PubMed  Google Scholar 

  51. Barker DJ, Osmond C, Golding J, Kuh D, Wadsworth ME. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ. 1989;298:564–7. Epub 1989/03/04. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Barker DJ, Bagby SP, Hanson MA. Mechanisms of disease: in utero programming in the pathogenesis of hypertension. Nat Clin Pract Nephrol. 2006;2:700–7.

    Article  PubMed  Google Scholar 

  53. Vanderheyden T, Kumar S, Fisk NM. Fetal renal impairment. Semin Neonatol. 2003;8:279–89. Epub 2004/03/06.eng.

    Article  PubMed  Google Scholar 

  54. Cohen HL, Kravets F, Zucconi W, Ratani R, Shah S, Dougherty D. Congenital abnormalities of the genitourinary system. Semin Roentgenol. 2004;39:282–303. Epub 2004/05/18.eng.

    Article  PubMed  Google Scholar 

  55. Cohen HL, Cooper J, Eisenberg P, Mandel FS, Gross BR, Goldman MA, et al. Normal length of fetal kidneys: sonographic study in 397 obstetric patients. Am J Roentgenol. 1991;157:545–8. Epub 1991/09/01.eng.

    Article  CAS  Google Scholar 

  56. Gilbert WM, Brace RA. Amniotic fluid volume and normal flows to and from the amniotic cavity. Semin Perinatol. 1993;17:150–7. Epub 1993/06/01.eng.

    CAS  PubMed  Google Scholar 

  57. Potter EL. Bilateral renal agenesis. J Pediatr. 1946;29:68–76. Epub 1946/07/01.eng.

    Article  CAS  PubMed  Google Scholar 

  58. Nicolini U, Fisk NM, Rodeck CH, Beacham J. Fetal urine biochemistry: an index of renal maturation and dysfunction. Br J Obstet Gynecol. 1992;99:46–50.

    Article  CAS  Google Scholar 

  59. Muller F, Dommergues M, Bussieres L, Lortat-Jacob S, Loirat C, Oury JF, et al. Development of human renal function: reference intervals for 10 biochemical markers in fetal urine. Clin Chem. 1996;42:1855–60. Epub 1996/11/01.eng.

    CAS  PubMed  Google Scholar 

  60. Muller F, Dommergues M, Mandelbrot L, Aubry MC, Nihoul-Fekete C, Dumez Y. Fetal urinary biochemistry predicts postnatal renal function in children with bilateral obstructive uropathies. Obstet Gynecol. 1993;82:813–20.

    CAS  PubMed  Google Scholar 

  61. Glick PL, Harrison MR, Golbus MS, Adzick NS, Filly RA, Callen PW, et al. Management of the fetus with congenital hydronephrosis II: prognostic criteria and selection for treatment. J Pediatr Surg. 1985;20:376–87. Epub 1985/08/01.eng.

    Article  CAS  PubMed  Google Scholar 

  62. Morris RK, Quinlan-Jones E, Kilby MD, Khan KS. Systematic review of accuracy of fetal urine analysis to predict poor postnatal renal function in cases of congenital urinary tract obstruction. Prenat Diagn. 2007;27:900–11. Epub 2007/07/05.eng.

    Article  CAS  PubMed  Google Scholar 

  63. Klein J, Lacroix C, Caubet C, Siwy J, Zurbig P, Dakna M, et al. Fetal urinary peptides to predict postnatal outcome of renal disease in fetuses with posterior urethral valves (PUV). Sci Transl Med. 2013;5:198ra06.

    Article  Google Scholar 

  64. Seikaly MG, Ho PL, Emmett L, Fine RN, Tejani A. Chronic renal insufficiency in children: the 2001 Annual Report of the NAPRTCS. Pediatr Nephrol. 2003;18:796–804.

    Article  PubMed  Google Scholar 

  65. Elder JS, Duckett Jr JW, Snyder HM. Intervention for fetal obstructive uropathy: has it been effective? Lancet. 1987;2(8566):1007–10. Epub 1987/10/31.eng.

    Article  CAS  PubMed  Google Scholar 

  66. Freedman AL, Johnson MP, Smith CA, Gonzalez R, Evans MI. Long-term outcome in children after antenatal intervention for obstructive uropathies. Lancet. 1999;354(9176):374–7.

    Article  CAS  PubMed  Google Scholar 

  67. Bueva A, Guignard JP. Renal function in preterm neonates. Pediatr Res. 1994;36:572–7.

    Article  CAS  PubMed  Google Scholar 

  68. Melo BF, Aguiar MB, Bouzada MC, Aguiar RL, Pereira AK, Paixao GM, et al. Early risk factors for neonatal mortality in CAKUT: analysis of 524 affected newborns. Pediatr Nephrol. 2012;27:965–72. Epub 2012/03/10.eng.

    Article  PubMed  Google Scholar 

  69. Quirino IG, Diniz JS, Bouzada MC, Pereira AK, Lopes TJ, Paixao GM, et al. Clinical course of 822 children with prenatally detected nephrouropathies. Clin J Am Soc Nephrol. 2012;7:444–51. Pubmed Central PMCID: 3302677, Epub 2012/01/24.eng.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Gonzalez Celedon C, Bitsori M, Tullus K. Progression of chronic renal failure in children with dysplastic kidneys. Pediatr Nephrol. 2007;22:1014–20.

    Article  PubMed  Google Scholar 

  71. Sanna-Cherchi S, Ravani P, Corbani V, Parodi S, Haupt R, Piaggio G, et al. Renal outcome in patients with congenital anomalies of the kidney and urinary tract. Kidney Int. 2009;76:528–33. Epub 2009/06/19.eng.

    Article  PubMed  Google Scholar 

  72. Wuhl E, van Stralen KJ, Verrina E, Bjerre A, Wanner C, Heaf JG, et al. Timing and outcome of renal replacement therapy in patients with congenital malformations of the kidney and urinary tract. Clin J Am Soc Nephrol. 2013;8:67–74. Pubmed Central PMCID: 3531653, Epub 2012/10/23.eng.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norman D. Rosenblum M.D., F.R.C.P.C. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rosenblum, N.D. (2016). Congenital Anomalies of the Kidney and Urinary Tract: An Overview. In: Barakat, A., Rushton, H. (eds) Congenital Anomalies of the Kidney and Urinary Tract. Springer, Cham. https://doi.org/10.1007/978-3-319-29219-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29219-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29217-5

  • Online ISBN: 978-3-319-29219-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics