Skip to main content

miRNA Regulation in Dental Stem Cells: From Development to Terminal Differentiation

  • Chapter
  • First Online:
Dental Stem Cells

Abstract

Dental Stem Cells (DSCs) are emerging adult stem cells (ASCs) as a good cell source for stem cell-based therapies and tissue engineering approaches. MicroRNAs (miRNAs) are approximately 20 nucleotide long small RNA molecules which can coordinate many genes and pathways. miRNAs effectively regulate stem cell types ranging from embryonic stem cells (ESCs) to mesenchymal stem cells (MSCs), and DSCs are no exception. Numerous studies in which miRNA profiling of DSCs from different sources of the mature and immature teeth including pulp, periodontal ligament, follicle and apical papilla tissues have been made in order to determine the role of specific miRNAs in various functions, which may be important for DSC biology. Moreover, the miRNA expression levels are being monitored both between different steps of differentiation and in cells that are differentiated in vitro. Such data will help to better retain stemness of cells, and manipulate the differentiation process into desired lineages. In this book chapter, we seek to compile data resulting from miRNA studies in DSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yan X, Qin H, Qu C, Tuan RS, Shi S, Huang GT (2010) IPS cells reprogrammed from human mesenchymal-like stem/progenitor cells of dental tissue origin. Stem Cells Dev 19(4):469–480. doi:10.1089/scd.2009.0314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stevens A, Zuliani T, Olejnik C, LeRoy H, Obriot H, Kerr-Conte J, Formstecher P, Bailliez Y, Polakowska RR (2008) Human dental pulp stem cells differentiate into neural crest-derived melanocytes and have label-retaining and sphere-forming abilities. Stem Cells Dev 17(6):1175–1184. doi:10.1089/scd.2008.0012

    Article  PubMed  Google Scholar 

  3. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. doi:10.1016/j.cell.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  4. Friedenstein AJ, Piatetzky S II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16(3):381–390

    CAS  PubMed  Google Scholar 

  5. Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH (2004) Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103(5):1669–1675. doi:10.1182/blood-2003-05-1670

    Article  CAS  PubMed  Google Scholar 

  6. Huang GT, Gronthos S, Shi S (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88(9):792–806. doi:10.1177/0022034509340867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gimble JM, Katz AJ, Bunnell BA (2007) Adipose-derived stem cells for regenerative medicine. Circ Res 100(9):1249–1260. doi:10.1161/01.RES.0000265074.83288.09

    Article  CAS  PubMed  Google Scholar 

  8. Jones EA, English A, Henshaw K, Kinsey SE, Markham AF, Emery P, McGonagle D (2004) Enumeration and phenotypic characterization of synovial fluid multipotential mesenchymal progenitor cells in inflammatory and degenerative arthritis. Arthritis Rheum 50(3):817–827. doi:10.1002/art.20203

    Article  PubMed  Google Scholar 

  9. Shih YR, Kuo TK, Yang AH, Lee OK, Lee CH (2009) Isolation and characterization of stem cells from the human parathyroid gland. Cell Prolif 42(4):461–470. doi:10.1111/j.1365-2184.2009.00614.x

    Article  CAS  PubMed  Google Scholar 

  10. Stadler B, Ivanovska I, Mehta K, Song S, Nelson A, Tan Y, Mathieu J, Darby C, Blau CA, Ware C, Peters G, Miller DG, Shen L, Cleary MA, Ruohola-Baker H (2010) Characterization of microRNAs involved in embryonic stem cell states. Stem Cells Dev 19(7):935–950. doi:10.1089/scd.2009.0426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Qi J, Yu JY, Shcherbata HR, Mathieu J, Wang AJ, Seal S, Zhou W, Stadler BM, Bourgin D, Wang L, Nelson A, Ware C, Raymond C, Lim LP, Magnus J, Ivanovska I, Diaz R, Ball A, Cleary MA, Ruohola-Baker H (2009) microRNAs regulate human embryonic stem cell division. Cell Cycle 8(22):3729–3741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Becker KA, Ghule PN, Therrien JA, Lian JB, Stein JL, van Wijnen AJ, Stein GS (2006) Self-renewal of human embryonic stem cells is supported by a shortened G1 cell cycle phase. J Cell Physiol 209(3):883–893. doi:10.1002/jcp.20776

    Article  CAS  PubMed  Google Scholar 

  13. Wang Y, Baskerville S, Shenoy A, Babiarz JE, Baehner L, Blelloch R (2008) Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nat Genet 40(12):1478–1483. doi:10.1038/ng.250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bar M, Wyman SK, Fritz BR, Qi J, Garg KS, Parkin RK, Kroh EM, Bendoraite A, Mitchell PS, Nelson AM, Ruzzo WL, Ware C, Radich JP, Gentleman R, Ruohola-Baker H, Tewari M (2008) MicroRNA discovery and profiling in human embryonic stem cells by deep sequencing of small RNA libraries. Stem Cells 26(10):2496–2505. doi:10.1634/stemcells.2008-0356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sengupta S, Nie J, Wagner RJ, Yang C, Stewart R, Thomson JA (2009) MicroRNA 92b controls the G1/S checkpoint gene p57 in human embryonic stem cells. Stem Cells 27(7):1524–1528. doi:10.1002/stem.84

    Article  CAS  PubMed  Google Scholar 

  16. Xu N, Papagiannakopoulos T, Pan G, Thomson JA, Kosik KS (2009) MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 137(4):647–658. doi:10.1016/j.cell.2009.02.038

    Article  CAS  PubMed  Google Scholar 

  17. Judson RL, Babiarz JE, Venere M, Blelloch R (2009) Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat Biotechnol 27(5):459–461. doi:10.1038/nbt.1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Subramanyam D, Lamouille S, Judson RL, Liu JY, Bucay N, Derynck R, Blelloch R (2011) Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat Biotechnol 29(5):443–448. doi:10.1038/nbt.1862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang CS, Li Z, Rana TM (2011) microRNAs modulate IPS cell generation. RNA 17(8):1451–1460. doi:10.1261/rna.2664111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S, Castoldi M, Soutschek J, Koteliansky V, Rosenwald A, Basson MA, Licht JD, Pena JT, Rouhanifard SH, Muckenthaler MU, Tuschl T, Martin GR, Bauersachs J, Engelhardt S (2008) MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456(7224):980–984. doi:10.1038/nature07511

    Article  CAS  PubMed  Google Scholar 

  21. Silva J, Barrandon O, Nichols J, Kawaguchi J, Theunissen TW, Smith A (2008) Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol 6(10), e253. doi:10.1371/journal.pbio.0060253

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hu W, Dooley J, Chung SS, Chandramohan D, Cimmino L, Mukherjee S, Mason CE, de Strooper B, Liston A, Park CY (2015) miR-29a maintains mouse hematopoietic stem cell self-renewal by regulating Dnmt3a. Blood 125(14):2206–2216. doi:10.1182/blood-2014-06-585273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brett JO, Renault VM, Rafalski VA, Webb AE, Brunet A (2011) The microRNA cluster miR-106b~25 regulates adult neural stem/progenitor cell proliferation and neuronal differentiation. Aging (Albany NY) 3(2):108–124

    Article  CAS  Google Scholar 

  24. Wang D, Zhang Z, O'Loughlin E, Wang L, Fan X, Lai EC, Yi R (2013) MicroRNA-205 controls neonatal expansion of skin stem cells by modulating the PI(3)K pathway. Nat Cell Biol 15(10):1153–1163. doi:10.1038/ncb2827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Baglio SR, Devescovi V, Granchi D, Baldini N (2013) MicroRNA expression profiling of human bone marrow mesenchymal stem cells during osteogenic differentiation reveals Osterix regulation by miR-31. Gene 527(1):321–331. doi:10.1016/j.gene.2013.06.021

    Article  CAS  PubMed  Google Scholar 

  26. Eskildsen T, Taipaleenmaki H, Stenvang J, Abdallah BM, Ditzel N, Nossent AY, Bak M, Kauppinen S, Kassem M (2011) MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo. Proc Natl Acad Sci U S A 108(15):6139–6144. doi:10.1073/pnas.1016758108

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kim YJ, Hwang SJ, Bae YC, Jung JS (2009) MiR-21 regulates adipogenic differentiation through the modulation of TGF-beta signaling in mesenchymal stem cells derived from human adipose tissue. Stem Cells 27(12):3093–3102. doi:10.1002/stem.235

    CAS  PubMed  Google Scholar 

  28. Bork S, Horn P, Castoldi M, Hellwig I, Ho AD, Wagner W (2011) Adipogenic differentiation of human mesenchymal stromal cells is down-regulated by microRNA-369-5p and up-regulated by microRNA-371. J Cell Physiol 226(9):2226–2234. doi:10.1002/jcp.22557

    Article  CAS  PubMed  Google Scholar 

  29. Yang B, Guo H, Zhang Y, Chen L, Ying D, Dong S (2011) MicroRNA-145 regulates chondrogenic differentiation of mesenchymal stem cells by targeting Sox9. PLoS One 6(7), e21679. doi:10.1371/journal.pone.0021679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Etheridge SL, Spencer GJ, Heath DJ, Genever PG (2004) Expression profiling and functional analysis of wnt signaling mechanisms in mesenchymal stem cells. Stem Cells 22(5):849–860. doi:10.1634/stemcells.22-5-849

    Article  CAS  PubMed  Google Scholar 

  31. Boland GM, Perkins G, Hall DJ, Tuan RS (2004) Wnt 3a promotes proliferation and suppresses osteogenic differentiation of adult human mesenchymal stem cells. J Cell Biochem 93(6):1210–1230. doi:10.1002/jcb.20284

    Article  CAS  PubMed  Google Scholar 

  32. Cho HH, Kim YJ, Kim SJ, Kim JH, Bae YC, Ba B, Jung JS (2006) Endogenous Wnt signaling promotes proliferation and suppresses osteogenic differentiation in human adipose derived stromal cells. Tissue Eng 12(1):111–121. doi:10.1089/ten.2006.12.111

    Article  CAS  PubMed  Google Scholar 

  33. Wu R, Tang Y, Zang W, Wang Y, Li M, Du Y, Zhao G, Xu Y (2014) MicroRNA-128 regulates the differentiation of rat bone mesenchymal stem cells into neuron-like cells by Wnt signaling. Mol Cell Biochem 387(1–2):151–158. doi:10.1007/s11010-013-1880-7

    Article  CAS  PubMed  Google Scholar 

  34. Wang Q, Cai J, Cai XH, Chen L (2013) miR-346 regulates osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by targeting the Wnt/beta-catenin pathway. PLoS One 8(9):e72266. doi:10.1371/journal.pone.0072266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ying QL, Nichols J, Chambers I, Smith A (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115(3):281–292

    Article  CAS  PubMed  Google Scholar 

  36. Chen D, Ji X, Harris MA, Feng JQ, Karsenty G, Celeste AJ, Rosen V, Mundy GR, Harris SE (1998) Differential roles for bone morphogenetic protein (BMP) receptor type IB and IA in differentiation and specification of mesenchymal precursor cells to osteoblast and adipocyte lineages. J Cell Biol 142(1):295–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang JF, Fu WM, He ML, Xie WD, Lv Q, Wan G, Li G, Wang H, Lu G, Hu X, Jiang S, Li JN, Lin MC, Zhang YO, Kung HF (2011) MiRNA-20a promotes osteogenic differentiation of human mesenchymal stem cells by co-regulating BMP signaling. RNA Biol 8(5):829–838. doi:10.4161/rna.8.5.16043

    Article  CAS  PubMed  Google Scholar 

  38. Li H, Li T, Wang S, Wei J, Fan J, Li J, Han Q, Liao L, Shao C, Zhao RC (2013) miR-17-5p and miR-106a are involved in the balance between osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells. Stem Cell Res 10(3):313–324. doi:10.1016/j.scr.2012.11.007

    Article  CAS  PubMed  Google Scholar 

  39. Wei J, Zhang B, Zheng X, Chen H, Tian X, Tang P, Song Q, Li T (2012) Changes of microRNA and target gene expression levels in osteogenic differentiation of human bone marrow mesenchymal stem cells. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 26(4):483–488

    CAS  PubMed  Google Scholar 

  40. Liu X, Song L, Liu J, Wang S, Tan X, Bai X, Bai T, Wang Y, Li M, Song Y, Li Y (2013) miR-18b inhibits TGF-beta1-induced differentiation of hair follicle stem cells into smooth muscle cells by targeting SMAD2. Biochem Biophys Res Commun 438(3):551–556. doi:10.1016/j.bbrc.2013.07.090

    Article  CAS  PubMed  Google Scholar 

  41. Weber M, Sotoca AM, Kupfer P, Guthke R, van Zoelen EJ (2013) Dynamic modelling of microRNA regulation during mesenchymal stem cell differentiation. BMC Syst Biol 7:124. doi:10.1186/1752-0509-7-124

    Article  PubMed  PubMed Central  Google Scholar 

  42. Huang F, Zhu X, Hu XQ, Fang ZF, Tang L, Lu XL, Zhou SH (2013) Mesenchymal stem cells modified with miR-126 release angiogenic factors and activate Notch ligand Delta-like-4, enhancing ischemic angiogenesis and cell survival. Int J Mol Med 31(2):484–492. doi:10.3892/ijmm.2012.1200

    CAS  PubMed  Google Scholar 

  43. Hoch RV, Soriano P (2003) Roles of PDGF in animal development. Development 130(20):4769–4784. doi:10.1242/dev.00721

    Article  CAS  PubMed  Google Scholar 

  44. Qu B, Xia X, Wu HH, Tu CQ, Pan XM (2014) PDGF-regulated miRNA-138 inhibits the osteogenic differentiation of mesenchymal stem cells. Biochem Biophys Res Commun 448(3):241–247. doi:10.1016/j.bbrc.2014.04.091

    Article  CAS  PubMed  Google Scholar 

  45. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97(25):13625–13630. doi:10.1073/pnas.240309797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A 100(10):5807–5812. doi:10.1073/pnas.0937635100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364(9429):149–155. doi:10.1016/S0140-6736(04)16627-0

    Article  CAS  PubMed  Google Scholar 

  48. Sonoyama W, Liu Y, Fang D, Yamaza T, Seo BM, Zhang C, Liu H, Gronthos S, Wang CY, Wang S, Shi S (2006) Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One 1, e79. doi:10.1371/journal.pone.0000079

    Article  PubMed  PubMed Central  Google Scholar 

  49. Morsczeck C, Gotz W, Schierholz J, Zeilhofer F, Kuhn U, Mohl C, Sippel C, Hoffmann KH (2005) Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 24(2):155–165. doi:10.1016/j.matbio.2004.12.004

    Article  CAS  PubMed  Google Scholar 

  50. Hara ES, Ono M, Eguchi T, Kubota S, Pham HT, Sonoyama W, Tajima S, Takigawa M, Calderwood SK, Kuboki T (2013) miRNA-720 controls stem cell phenotype, proliferation and differentiation of human dental pulp cells. PLoS One 8(12):e83545. doi:10.1371/journal.pone.0083545

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sun F, Wan M, Xu X, Gao B, Zhou Y, Sun J, Cheng L, Klein OD, Zhou X, Zheng L (2014) Crosstalk between miR-34a and notch signaling promotes differentiation in apical papilla stem cells (SCAPs). J Dent Res 93(6):589–595. doi:10.1177/0022034514531146

    Article  CAS  PubMed  Google Scholar 

  52. Vasanthan P, Govindasamy V, Gnanasegaran N, Kunasekaran W, Musa S, Abu Kasim NH (2015) Differential expression of basal microRNAs' patterns in human dental pulp stem cells. J Cell Mol Med 19(3):566–580. doi:10.1111/jcmm.12381

    Article  CAS  PubMed  Google Scholar 

  53. Chen HC, Lee YS, Sieber M, Lu HT, Wei PC, Wang CN, Peng HH, Chao AS, Cheng PJ, Chang SD, Chen SJ, Wang TH (2012) MicroRNA and messenger RNA analyses of mesenchymal stem cells derived from teeth and the Wharton jelly of umbilical cord. Stem Cells Dev 21(6):911–922. doi:10.1089/scd.2011.0186

    Article  CAS  PubMed  Google Scholar 

  54. Sarkar L, Cobourne M, Naylor S, Smalley M, Dale T, Sharpe PT (2000) Wnt/Shh interactions regulate ectodermal boundary formation during mammalian tooth development. Proc Natl Acad Sci U S A 97(9):4520–4524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang Y, Li L, Zheng Y, Yuan G, Yang G, He F, Chen Y (2012) BMP activity is required for tooth development from the lamina to bud stage. J Dent Res 91(7):690–695. doi:10.1177/0022034512448660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Diekwisch TG, Luan X, McIntosh JE (2002) CP27 localization in the dental lamina basement membrane and in the stellate reticulum of developing teeth. J Histochem Cytochem 50(4):583–586

    Article  CAS  PubMed  Google Scholar 

  57. Li A, Song T, Wang F, Liu D, Fan Z, Zhang C, He J, Wang S (2012) MicroRNAome and expression profile of developing tooth germ in miniature pigs. PLoS One 7(12), e52256. doi:10.1371/journal.pone.0052256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kim EJ, Lee MJ, Li L, Yoon KS, Kim KS, Jung HS (2014) Failure of Tooth Formation Mediated by miR-135a Overexpression via BMP Signaling. J Dent Res 93(6):571–575. doi:10.1177/0022034514529303

    Article  CAS  PubMed  Google Scholar 

  59. Koussoulakou DS, Margaritis LH, Koussoulakos SL (2009) A curriculum vitae of teeth: evolution, generation, regeneration. Int J Biol Sci 5(3):226–243

    Article  PubMed  PubMed Central  Google Scholar 

  60. Sarkar L, Sharpe PT (1999) Expression of Wnt signalling pathway genes during tooth development. Mech Dev 85(1–2):197–200

    Article  CAS  PubMed  Google Scholar 

  61. Wan M, Gao B, Sun F, Tang Y, Ye L, Fan Y, Klein OD, Zhou X, Zheng L (2012) microRNA miR-34a regulates cytodifferentiation and targets multi-signaling pathways in human dental papilla cells. PLoS One 7(11):e50090. doi:10.1371/journal.pone.0050090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Marks SC Jr, Gorski JP, Wise GE (1995) The mechanisms and mediators of tooth eruption--models for developmental biologists. Int J Dev Biol 39(1):223–230

    PubMed  Google Scholar 

  63. Khan QE, Sehic A, Khuu C, Risnes S, Osmundsen H (2013) Expression of Clu and Tgfb1 during murine tooth development: effects of in-vivo transfection with anti-miR-214. Eur J Oral Sci 121(4):303–312. doi:10.1111/eos.12056

    Article  CAS  PubMed  Google Scholar 

  64. Cao H, Wang J, Li X, Florez S, Huang Z, Venugopalan SR, Elangovan S, Skobe Z, Margolis HC, Martin JF, Amendt BA (2010) MicroRNAs play a critical role in tooth development. J Dent Res 89(8):779–784. doi:10.1177/0022034510369304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jevnaker AM, Osmundsen H (2008) MicroRNA expression profiling of the developing murine molar tooth germ and the developing murine submandibular salivary gland. Arch Oral Biol 53(7):629–645. doi:10.1016/j.archoralbio.2008.01.014

    Article  CAS  PubMed  Google Scholar 

  66. Formosa A, Piro MC, Docimo R, Maturo P, Sollecito DR, Kalimutho M, Sancesario G, Barlattani A, Melino G, Candi E, Bernardini S (2011) Salivary miRNAome profiling uncovers epithelial and proliferative miRNAs with differential expression across dentition stages. Cell Cycle 10(19):3359–3368. doi:10.4161/cc.10.19.17647

    Article  CAS  PubMed  Google Scholar 

  67. Chen P, Wei D, Xie B, Ni J, Xuan D, Zhang J (2014) Effect and possible mechanism of network between microRNAs and RUNX2 gene on human dental follicle cells. J Cell Biochem 115(2):340–348. doi:10.1002/jcb.24668

    Article  CAS  PubMed  Google Scholar 

  68. Gong Q, Wang R, Jiang H, Lin Z, Ling J (2012) Alteration of microRNA expression of human dental pulp cells during odontogenic differentiation. J Endod 38(10):1348–1354. doi:10.1016/j.joen.2012.06.016

    Article  PubMed  Google Scholar 

  69. Liu H, Lin H, Zhang L, Sun Q, Yuan G, Zhang L, Chen S, Chen Z (2013) miR-145 and miR-143 regulate odontoblast differentiation through targeting Klf4 and Osx genes in a feedback loop. J Biol Chem 288(13):9261–9271. doi:10.1074/jbc.M112.433730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sun Q, Liu H, Lin H, Yuan G, Zhang L, Chen Z (2013) MicroRNA-338-3p promotes differentiation of mDPC6T into odontoblast-like cells by targeting Runx2. Mol Cell Biochem 377(1–2):143–149. doi:10.1007/s11010-013-1580-3

    Article  CAS  PubMed  Google Scholar 

  71. Huang X, Xu S, Gao J, Liu F, Yue J, Chen T, Wu B (2011) miRNA expression profiling identifies DSPP regulators in cultured dental pulp cells. Int J Mol Med 28(4):659–667. doi:10.3892/ijmm.2011.721

    CAS  PubMed  Google Scholar 

  72. Yue J, Wu B, Gao J, Huang X, Li C, Ma D, Fang F (2012) DMP1 is a target of let-7 in dental pulp cells. Int J Mol Med 30(2):295–301. doi:10.3892/ijmm.2012.982

    CAS  PubMed  Google Scholar 

  73. Park MG, Kim JS, Park SY, Lee SA, Kim HJ, Kim CS, Kim JS, Chun HS, Park JC, Kim do K (2014) MicroRNA-27 promotes the differentiation of odontoblastic cell by targeting APC and activating Wnt/beta-catenin signaling. Gene 538(2):266–272. doi:10.1016/j.gene.2014.01.045

    Google Scholar 

  74. Liu Y, Liu W, Hu C, Xue Z, Wang G, Ding B, Luo H, Tang L, Kong X, Chen X, Liu N, Ding Y, Jin Y (2011) MiR-17 modulates osteogenic differentiation through a coherent feed-forward loop in mesenchymal stem cells isolated from periodontal ligaments of patients with periodontitis. Stem Cells 29(11):1804–1816. doi:10.1002/stem.728

    Article  CAS  PubMed  Google Scholar 

  75. Gay I, Cavender A, Peto D, Sun Z, Speer A, Cao H, Amendt BA (2014) Differentiation of human dental stem cells reveals a role for microRNA-218. J Periodontal Res 49(1):110–120. doi:10.1111/jre.12086

    Article  CAS  PubMed  Google Scholar 

  76. Zhou Q, Zhao ZN, Cheng JT, Zhang B, Xu J, Huang F, Zhao RN, Chen YJ (2011) Ibandronate promotes osteogenic differentiation of periodontal ligament stem cells by regulating the expression of microRNAs. Biochem Biophys Res Commun 404(1):127–132. doi:10.1016/j.bbrc.2010.11.079

    Article  CAS  PubMed  Google Scholar 

  77. Nozaki T, Ohura K (2014) Regulation of miRNA during direct reprogramming of dental pulp cells to insulin-producing cells. Biochem Biophys Res Commun 444(2):195–198. doi:10.1016/j.bbrc.2014.01.030

    Article  CAS  PubMed  Google Scholar 

  78. Wang J, Liu X, Jin X, Ma H, Hu J, Ni L, Ma PX (2010) The odontogenic differentiation of human dental pulp stem cells on nanofibrous poly(L-lactic acid) scaffolds in vitro and in vivo. Acta Biomater 6(10):3856–3863. doi:10.1016/j.actbio.2010.04.009

    Article  CAS  PubMed  Google Scholar 

  79. Ravindran S, Zhang Y, Huang CC, George A (2014) Odontogenic induction of dental stem cells by extracellular matrix-inspired three-dimensional scaffold. Tissue Eng Part A 20(1–2):92–102. doi:10.1089/ten.TEA.2013.0192

    Article  CAS  PubMed  Google Scholar 

  80. Nam S, Won JE, Kim CH, Kim HW (2011) Odontogenic differentiation of human dental pulp stem cells stimulated by the calcium phosphate porous granules. J Tissue Eng 2011:812547. doi:10.4061/2011/812547

    PubMed  PubMed Central  Google Scholar 

  81. Bakopoulou A, Leyhausen G, Volk J, Tsiftsoglou A, Garefis P, Koidis P, Geurtsen W (2011) Comparative analysis of in vitro osteo/odontogenic differentiation potential of human dental pulp stem cells (DPSCs) and stem cells from the apical papilla (SCAP). Arch Oral Biol 56(7):709–721. doi:10.1016/j.archoralbio.2010.12.008

    Article  CAS  PubMed  Google Scholar 

  82. Scheller EL, Chang J, Wang CY (2008) Wnt/beta-catenin inhibits dental pulp stem cell differentiation. J Dent Res 87(2):126–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Buchaille R, Couble ML, Magloire H, Bleicher F (2000) A substractive PCR-based cDNA library from human odontoblast cells: identification of novel genes expressed in tooth forming cells. Matrix Biol 19(5):421–430

    Article  CAS  PubMed  Google Scholar 

  84. Lin H, Xu L, Liu H, Sun Q, Chen Z, Yuan G, Chen Z (2011) KLF4 promotes the odontoblastic differentiation of human dental pulp cells. J Endod 37(7):948–954. doi:10.1016/j.joen.2011.03.030

    Article  PubMed  Google Scholar 

  85. Chen Z, Couble ML, Mouterfi N, Magloire H, Chen Z, Bleicher F (2009) Spatial and temporal expression of KLF4 and KLF5 during murine tooth development. Arch Oral Biol 54(5):403–411. doi:10.1016/j.archoralbio.2009.02.003

    Article  CAS  PubMed  Google Scholar 

  86. Chen S, Gluhak-Heinrich J, Wang YH, Wu YM, Chuang HH, Chen L, Yuan GH, Dong J, Gay I, MacDougall M (2009) Runx2, osx, and dspp in tooth development. J Dent Res 88(10):904–909. doi:10.1177/0022034509342873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gay IC, Chen S, MacDougall M (2007) Isolation and characterization of multipotent human periodontal ligament stem cells. Orthod Craniofac Res 10(3):149–160. doi:10.1111/j.1601-6343.2007.00399.x

    Article  CAS  PubMed  Google Scholar 

  88. Guo R, Yamashita M, Zhang Q, Zhou Q, Chen D, Reynolds DG, Awad HA, Yanoso L, Zhao L, Schwarz EM, Zhang YE, Boyce BF, Xing L (2008) Ubiquitin ligase Smurf1 mediates tumor necrosis factor-induced systemic bone loss by promoting proteasomal degradation of bone morphogenetic signaling proteins. J Biol Chem 283(34):23084–23092. doi:10.1074/jbc.M709848200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhao L, Huang J, Guo R, Wang Y, Chen D, Xing L (2010) Smurf1 inhibits mesenchymal stem cell proliferation and differentiation into osteoblasts through JunB degradation. J Bone Miner Res 25(6):1246–1256. doi:10.1002/jbmr.28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhao M, Qiao M, Harris SE, Oyajobi BO, Mundy GR, Chen D (2004) Smurf1 inhibits osteoblast differentiation and bone formation in vitro and in vivo. J Biol Chem 279(13):12854–12859. doi:10.1074/jbc.M313294200

    Article  CAS  PubMed  Google Scholar 

  91. Lizier NF, Kerkis A, Gomes CM, Hebling J, Oliveira CF, Caplan AI, Kerkis I (2012) Scaling-up of dental pulp stem cells isolated from multiple niches. PLoS One 7(6), e39885. doi:10.1371/journal.pone.0039885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Thesleff I, Wang XP, Suomalainen M (2007) Regulation of epithelial stem cells in tooth regeneration. C R Biol 330(6–7):561–564. doi:10.1016/j.crvi.2007.03.005

    Article  CAS  PubMed  Google Scholar 

  93. Yang QE, Racicot KE, Kaucher AV, Oatley MJ, Oatley JM (2013) MicroRNAs 221 and 222 regulate the undifferentiated state in mammalian male germ cells. Development 140(2):280–290. doi:10.1242/dev.087403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ragni E, Montemurro T, Montelatici E, Lavazza C, Vigano M, Rebulla P, Giordano R, Lazzari L (2013) Differential microRNA signature of human mesenchymal stem cells from different sources reveals an “environmental-niche memory” for bone marrow stem cells. Exp Cell Res 319(10):1562–1574. doi:10.1016/j.yexcr.2013.04.002

    Article  CAS  PubMed  Google Scholar 

  95. Sipert CR, Morandini AC, Dionisio TJ, Trachtenberg AJ, Kuo WP, Santos CF (2014) MicroRNA-146a and microRNA-155 show tissue-dependent expression in dental pulp, gingival and periodontal ligament fibroblasts in vitro. J Oral Sci 56(2):157–164

    Article  CAS  PubMed  Google Scholar 

  96. Jheon AH, Li CY, Wen T, Michon F, Klein OD (2011) Expression of microRNAs in the stem cell niche of the adult mouse incisor. PLoS One 6(9), e24536. doi:10.1371/journal.pone.0024536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cao H, Jheon A, Li X, Sun Z, Wang J, Florez S, Zhang Z, McManus MT, Klein OD, Amendt BA (2013) The Pitx2:miR-200c/141:noggin pathway regulates Bmp signaling and ameloblast differentiation. Development 140(16):3348–3359. doi:10.1242/dev.089193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omer Faruk Bayrak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gulluoglu, S., Tuysuz, E.C., Bayrak, O.F. (2016). miRNA Regulation in Dental Stem Cells: From Development to Terminal Differentiation. In: Şahin, F., Doğan, A., Demirci, S. (eds) Dental Stem Cells. Stem Cell Biology and Regenerative Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-28947-2_3

Download citation

Publish with us

Policies and ethics