Skip to main content

Application of Texture Features for Classification of Primary Benign and Primary Malignant Focal Liver Lesions

  • Chapter
  • First Online:
Image Feature Detectors and Descriptors

Part of the book series: Studies in Computational Intelligence ((SCI,volume 630))

Abstract

The present work focuses on the aspect of textural variations exhibited by primary benign and primary malignant focal liver lesions. For capturing these textural variations of benign and malignant liver lesions, texture features are computed using statistical methods, signal processing based methods and transform domain methods. As an application of texture description in medical domain, an efficient CAD system for primary benign i.e., hemangioma (HEM) and primary malignant i.e., hepatocellular carcinoma (HCC) liver lesions based on texture features derived from B-Mode liver ultrasound images of Focal liver lesions has been proposed in the present study. The texture features have been computed from the inside regions of interest (IROIs) i.e., from the regions inside the lesion and one surrounding region of interest (SROI) for each lesion. Texture descriptors are computed from IROIs and SROIs using six feature extraction methods namely, FOS, GLCM, GLRLM, FPS, Gabor and Laws’ features. Three texture feature vectors (TFVs) i.e., TFV1 consists of texture features computed from IROIs, TFV2 consists of texture ratio features (i.e., texture feature value computed from IROI divided by texture feature value computed from corresponding SROI) and TFV3 computed by combining TFV1 and TFV2 (IROIs texture features + texture ratio features) are subjected to classification by SVM and SSVM classifiers. It is observed that the performance of SSVM based CAD system is better than SVM based CAD system with respect to (a) overall classification accuracy (b) individual class accuracy for atypical HEM class and (c) computational efficiency. The promising results obtained from the proposed SSVM based CAD system design indicates its usefulness to assist radiologists for differential diagnosis between primary benign and primary malignant liver lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bates, J.: Abdominal Ultrasound How Why and When, 2nd edn, pp. 80–107. Churchill Livingstone, Oxford (2004)

    Google Scholar 

  2. Virmani, J., Kumar, V., Kalra, N., Khandelwal, N.: A rapid approach for prediction of liver cirrhosis based on first order statistics. In: Proceedings of IEEE International Conference on Multimedia, Signal Processing and Communication Technologies, IMPACT-2011, pp. 212–215 (2011)

    Google Scholar 

  3. Virmani, J., Kumar, V., Kalra, N., Khandelwal, N.: Neural network ensemble based CAD system for focal liver lesions using B-mode ultrasound. J. Digit. Imaging 27(4), 520–537 (2014)

    Article  Google Scholar 

  4. Virmani, J., Kumar, V., Kalra, N., Khandelwal, N.: SVM-based characterization of liver cirrhosis by singular value decomposition of GLCM matrix. Int. J. Artif. Intell. Soft. Comput. 4(1), 276–296 (2013)

    Article  Google Scholar 

  5. Virmani, J., Kumar, V., Kalra, N., Khandelwal, N.: Prediction of liver cirrhosis based on multiresolution texture descriptors from B-mode ultrasound. Int. J. Convergence Comput. 1(1), 19–37 (2013)

    Article  Google Scholar 

  6. Soye, J.A., Mullan, C.P., Porter, S., Beattie, H., Barltrop, A.H., Nelson, W.M.: The use of contrast-enhanced ultrasound in the characterization of focal liver lesions. Ulster Med. J. 76(1), 22–25 (2007)

    Google Scholar 

  7. Colombo, M., Ronchi, G.: Focal Liver Lesions-Detection, Characterization, Ablation, pp. 167–177. Springer, Berlin (2005)

    Google Scholar 

  8. Harding, J., Callaway, M.: Ultrasound of focal liver lesions. Rad. Mag. 36(424), 33–34 (2010)

    Google Scholar 

  9. Jeffery, R.B., Ralls, P.W.: Sonography of Abdomen. Raven, New York (1995)

    Google Scholar 

  10. Pen, J.H., Pelckmans, P.A., Van Maercke, Y.M., Degryse, H.R., De Schepper, A.M.: Clinical significance of focal echogenic liver lesions. Gastrointest. Radiol. 11(1), 61–66 (1986)

    Article  Google Scholar 

  11. Mitrea, D., Nedevschi, S., Lupsor, M., Socaciu, M., Badea, R.: Advanced classification methods for improving the automatic diagnosis of the hepatocellular carcinoma, based on ultrasound images. In: 2010 IEEE International Conference on Automation Quality and Testing Robotics (AQTR), vol. 2, issue 1, pp. 1–6 (2010)

    Google Scholar 

  12. Mitrea, D., Nedevschi, S., Lupsor, M., Socaciu, M., Badea, R.: Exploring texture-based parameters for non-invasive detection of diffuse liver diseases and liver cancer from ultrasound images. In: Proceedings of MMACTEE’06 Proceedings of the 8th WSEAS International Conference on Mathematical Methods and Computational Techniques in Electrical Engineering, pp. 259–265 (2006)

    Google Scholar 

  13. Mitrea, D., Nedevschi, S., Lupsor, M., Socaciu, M., Badea, R.: Improving the textural model of the hepatocellular carcinoma using dimensionality reduction methods. In: 2nd International Congress on Image and Signal Processing, 2009. CISP ’09. vol. 1, issue 5, pp. 17–19 (2009)

    Google Scholar 

  14. Virmani, J., Kumar, V., Kalra, N., Khandelwal, N.: A comparative study of computer-aided classification systems for focal hepatic lesions from B-mode ultrasound. J. Med. Eng. Technol. 37(4), 292–306 (2013)

    Article  Google Scholar 

  15. Virmani, J., Kumar, V., Kalra, N., Khandelwal, N.: PCA-SVM based CAD system for focal liver lesions using B-mode ultrasound images. Def. Sci. J. 63(5), 478–486 (2013)

    Article  Google Scholar 

  16. Yoshida, H., Casalino, D.D., Keserci, B., Coskun, A., Ozturk, O., Savranlar, A.: Wavelet packet based texture analysis for differentiation between benign and malignant liver tumors in ultrasound images. Phys. Med. Biol. 48, 3735–3753 (2003)

    Article  Google Scholar 

  17. Tiferes, D.A., D’lppolito, G.: Liver neoplasms: imaging characterization. Radiol. Bras. 41(2), 119–127 (2008)

    Google Scholar 

  18. Virmani, J., Kumar, V., Kalra, N., Khandelwal, N.: Characterization of primary and secondary malignant liver lesions from B-mode ultrasound. J. Digit. Imaging 26(6), 1058–1070 (2013)

    Article  Google Scholar 

  19. Di Martino, M., De Filippis, G., De Santis, A., Geiger, D., Del Monte, M., Lombardo, C.V., Rossi, M., Corradini, S.G., Mennini, G., Catalano, C.: Hepatocellular carcinoma in cirrhotic patients: prospective comparison of US. CT and MR imaging. Eur. Radiol. 23(4), 887–896 (2013)

    Google Scholar 

  20. Virmani, J., Kumar, V., Kalra, N., Khandelwal, N.: SVM-based characterization of liver ultrasound images using wavelet packet texture descriptors. J. Digit. Imaging 26(3), 530–543 (2013)

    Article  Google Scholar 

  21. Kimura, Y., Fukada, R., Katagiri, S., Matsuda, Y.: Evaluation of hyperechoic liver tumors in MHTS. J. Med. Syst. 17(3/4), 127–132 (1993)

    Article  Google Scholar 

  22. Sujana, S., Swarnamani, S., Suresh, S.: Application of artificial neural networks for the classification of liver lesions by image texture parameters. Ultrasound Med. Biol. 22(9), 1177–1181 (1996)

    Article  Google Scholar 

  23. Poonguzhali, S., Deepalakshmi, B., Ravindran, G.: Optimal feature selection and automatic classification of abnormal masses in ultrasound liver images. In: Proceedings of IEEE International Conference on Signal Processing, Communications and Networking, ICSCN’07, pp. 503–506 (2007)

    Google Scholar 

  24. Kadah, Y.M., Farag, A.A., Zurada, J.M., Badawi, A.M., Youssef, A.M.: Classification algorithms for quantitative tissue characterization of diffuse liver disease from ultrasound images. IEEE Trans. Med. Imaging 15(4), 466–478 (1996)

    Article  Google Scholar 

  25. Badawi, A.M., Derbala, A.S., Youssef, A.B.M.: Fuzzy logic algorithm for quantitative tissue characterization of diffuse liver diseases from ultrasound images. Int. J. Med. Inf. 55, 135–147 (1999)

    Article  Google Scholar 

  26. Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic, New York (1990)

    MATH  Google Scholar 

  27. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2(2), 1–43 (1998)

    Article  Google Scholar 

  28. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. J. Mach. Learn. 46(1–3), 1–39 (2002)

    Google Scholar 

  29. Kim, S.H., Lee, J.M., Kim, K.G., Kim, J.H., Lee, J.Y., Han, J.K., Choi, B.I.: Computer-aided image analysis of focal hepatic lesions in ultrasonography: preliminary results. Abdom. Imaging 34(2), 183–191 (2009)

    Article  Google Scholar 

  30. Rachidi, M., Marchadier, A., Gadois, C., Lespessailles, E., Chappard, C., Benhamou, C.L.: Laws’ mask descriptors applied to bone texture analysis: an innovative and discrimant tool in osteoporosis. Skeletal Radiol. 37(1), 541–548 (2008)

    Article  Google Scholar 

  31. Haralick, R., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. SMC- 3(6), 610–121 (1973)

    Google Scholar 

  32. Galloway, R.M.M.: Texture analysis using gray level run lengths. Comput. Graph. Image Process. 4, 172–179 (1975)

    Article  Google Scholar 

  33. Chu, A., Sehgal, C.M., Greenleag, J.F.: Use of gray level distribution of run lengths for texture analysis. Pattern Recogn. Lett. 11, 415–420 (1990)

    Article  MATH  Google Scholar 

  34. Dasarathy, B.V., Holder, E.B.: Image characterizations based on joint gray level-run length distributions. Pattern Recogn. Lett. 12, 497–502 (1991)

    Article  Google Scholar 

  35. Virmani, J., Kumar, V., Kalra, N., Khandelwal, N.: Prediction of cirrhosis based on singular value decomposition of gray level co-occurrence matrix and a neural network classifier. In: Proceedings of the IEEE International Conference on Development in E-Systems Engineering, DeSe-2011, pp. 146–151 (2011)

    Google Scholar 

  36. Lee, C., Chen, S.: Gabor wavelets and SVM classifier for liver disease classification from CT images. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics, pp. 548–552. IEEE, Taipei, Taiwan, San Diego, USA

    Google Scholar 

  37. Laws, K.I.: Rapid texture identification. SPIE Proc. Semin. Image Process. Missile Guid. 238, 376–380 (1980)

    Article  Google Scholar 

  38. Virmani, J., Kumar, V., Kalra, N., Khandelwal, N.: Prediction of cirrhosis from liver ultrasound B-mode images based on Laws’ mask analysis. In: Proceedings of the IEEE International Conference on Image Information Processing, ICIIP-2011, pp. 1–5. Himachal Pradesh, India (2011)

    Google Scholar 

  39. Hassanein, A.E., Kim, T.H.: Breast cancer MRI diagnosis approach using support vector machine and pulse coupled neural networks. J. Appl. Logic 10(4), 274–284 (2012)

    Google Scholar 

  40. Kriti., Virmani, J., Dey, N., Kumar, V.: PCA-PNN and PCA-SVM based CAD Systems for Breast Density Classification. In: Hassanien, A.E., et al. (eds.) Applications of Intelligent Optimization in Biology and Medicine, vol. 96, pp. 159–180. Springer (2015)

    Google Scholar 

  41. Kriti., Virmani, J.: Breast Tissue Density Classification Using Wavelet-Based Texture Descriptors. In: Proceedings of the Second International Conference on Computer and Communication Technologies (IC3T-2015), pp. 539–546 (2015)

    Google Scholar 

  42. Chang, C.C., Lin, C.J.: LIBSVM, a library of support vector machines. http://www.csie.ntu.edu.tw/~cjlin/libsvm. Accessed 15 Jan 2015

  43. Purnami, S.W., Embong, A., Zain, J.M., Rahayu, S.P.: A new smooth support vector machine and its applications in diabetes disease diagnosis. J. Comput. Sci. 1, 1003–1008 (2009)

    Google Scholar 

  44. Lee, Y.J., Mangasarian, O.L.: SSVM: a smooth support vector machine for classification. Comput. Optim. Appl. 20(1), 5–22 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  45. Lee, Y.J., Mangasarian, O.L.: SSVM toolbox. http://research.cs.wisc.edu/dmi/svm/ssvm/. Accessed 20 Feb 2015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitendra Virmani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Manth, N., Virmani, J., Kumar, V., Kalra, N., Khandelwal, N. (2016). Application of Texture Features for Classification of Primary Benign and Primary Malignant Focal Liver Lesions . In: Awad, A., Hassaballah, M. (eds) Image Feature Detectors and Descriptors . Studies in Computational Intelligence, vol 630. Springer, Cham. https://doi.org/10.1007/978-3-319-28854-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28854-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28852-9

  • Online ISBN: 978-3-319-28854-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics