Skip to main content

A Direct Method for the Langevin-Analysis of Multidimensional Stochastic Processes with Strong Correlated Measurement Noise

  • Conference paper
  • First Online:
Time Series Analysis and Forecasting

Part of the book series: Contributions to Statistics ((CONTRIB.STAT.))

  • 2628 Accesses

Abstract

This paper addresses the problem of finding a direct operational method to disentangle the sum of two continuous Markovian stochastic processes, a more general case of the so-called measurement noise concept, given only a measured time series of the sum process. The presented method is based on a recently published approach for the analysis of multidimensional Langevin-type stochastic processes in the presence of strong correlated measurement noise (Lehle, J Stat Phys 152(6):1145–1169, 2013). The method extracts from noisy data the respective drift and diffusion coefficients corresponding to the Itô–Langevin equation describing each stochastic process. The method presented here imposes neither constraints nor parameters, but all coefficients are directly extracted from the multidimensional data. The method is introduced within the framework of existing reconstruction methods, and then applied to the sum of a two-dimensional stochastic process convoluted with an Ornstein–Uhlenbeck process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friedrich, R., Peinke, J., Sahimi, M., Tabar, M.R.R.: Approaching complexity by stochastic methods: from biological systems to turbulence. Phys. Rep. 506(5), 87–162 (2011)

    Article  MathSciNet  Google Scholar 

  2. Lehle, B.: Stochastic time series with strong, correlated measurement noise: Markov analysis in n dimensions. J. Stat. Phys. 152(6), 1145–1169 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Risken, H., Frank, T.: The Fokker-Planck Equation. Springer Series in Synergetics, vol. 18. Springer, Berlin, Heidelberg (1996)

    Google Scholar 

  4. Friedrich, R., Peinke, J.: Description of a turbulent cascade by a Fokker-Planck equation. Phys. Rev. Lett. 78, 863–866 (1997)

    Article  Google Scholar 

  5. Renner, C., Peinke, J., Friedrich, R.: Experimental indications for Markov properties of small-scale turbulence. J. Fluid Mech. 433, 383–409 (2001)

    Article  MATH  Google Scholar 

  6. Ghashghaieand, S., Breymann, W., Peinke, J., Talkner, P., Dodge, Y.: Turbulent cascades in foreign exchange markets. Nature 381, 767–770 (1996)

    Article  Google Scholar 

  7. Milan, P., Wächter, M., Peinke, J.: Turbulent character of wind energy. Phys. Rev. Lett., 110, 138701 (2013)

    Article  Google Scholar 

  8. Raischel, F., Scholz, T., Lopes, V.V., Lind, P.G.: Uncovering wind turbine properties through two-dimensional stochastic modeling of wind dynamics. Phys. Rev. E 88, 042146 (2013)

    Article  Google Scholar 

  9. Zaburdaev, V., Uppaluri, S., Pfohl, T., Engstler, M., Friedrich, R., Stark, H.: Langevin dynamics deciphers the motility pattern of swimming parasites. Phys. Rev. Lett. 106, 208103 (2011)

    Article  Google Scholar 

  10. Lamouroux, D., Lehnertz, K.: Kernel-based regression of drift and diffusion coefficients of stochastic processes. Phys. Lett. A 373(39), 3507–3512 (2009)

    Article  MATH  Google Scholar 

  11. Kleinhans, D.: Estimation of drift and diffusion functions from time series data: a maximum likelihood framework. Phys. Rev. E 85, 026705 (2012)

    Article  Google Scholar 

  12. Lehle, B.: Analysis of stochastic time series in the presence of strong measurement noise. Phys. Rev. E 83, 021113 (2011)

    Article  Google Scholar 

  13. Raischel, F., Russo, A., Haase, M., Kleinhans, D., Lind, P.G.: Optimal variables for describing evolution of no2 concentration. Phys. Lett. A 376, 2081–2089 (2012)

    Article  Google Scholar 

  14. Vasconcelos, V.V., Raischel, F., Haase, M., Peinke, J., Wächter, M., Lind, P.G., Kleinhans, D.: Principal axes for stochastic dynamics. Phys. Rev. E 84, 031103 (2011)

    Article  Google Scholar 

  15. Böttcher, F., Peinke, J., Kleinhans, D., Friedrich, R., Lind, P.G., Haase, M.: Reconstruction of complex dynamical systems affected by strong measurement noise. Phys. Rev. Lett. 97, 090603 (2006)

    Article  Google Scholar 

  16. Lind, P.G. Haase, M., Böttcher, F., Peinke, J., Kleinhans, D., Friedrich, R.: Extracting strong measurement noise from stochastic time series: applications to empirical data. Phys. Rev. E 81, 041125 (2010)

    Article  Google Scholar 

  17. Carvalho, J., Raischel, F., Haase, M., Lind, P.G.: Evaluating strong measurement noise in data series with simulated annealing method. J. Phys. Conf. Ser. 285, 012007 (2011)

    Article  Google Scholar 

  18. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106, 25–57 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Andersson, J., Houska, B., Diehl, M.: Towards a computer algebra system with automatic differentiation for use with object-oriented modelling languages. In: Proceedings of the 3rd International Workshop on Equation-Based Object-Oriented Modeling Languages and Tools, Oslo, pp. 99–105 (2010)

    Google Scholar 

  20. HSL: A collection of Fortran codes for large scale scientific computation. http://www.hsl.rl.ac.uk/ (2013)

  21. Scholz, T., Raischel, F., Wchter, M., Lehle, B., Lopes, V.V., Lind, P.G., Peinke, J.: Parameter-free resolution of the superposition of stochastic signals. Phys. Rev. E (2016, submitted)

    Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge support from Fundação para a Ciência e a Tecnologia (FCT) through SFRH/BD/86934/2012 (TS), SFRH/BPD/65427/2009 (FR), UID/GEO/50019/2013-ILD-LA (FR), German Federal Ministry for Economic Affairs and Energy 0325577B (PGL), from FCT and German Academic Exchange Service DRI/DAAD/1208/2013 (TS, FR, P GL, MW) and for the internship fellowship through IPID4all from University of Oldenburg (TS). VVL thanks the Prometeo Project of SENESCYT (Ecuador) for financial support. This work is partially supported by FCT, UID/MAT/04561/2013 (VVL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Scholz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Scholz, T., Raischel, F., Lind, P.G., Wächter, M., Lopes, V.V., Lehle, B. (2016). A Direct Method for the Langevin-Analysis of Multidimensional Stochastic Processes with Strong Correlated Measurement Noise. In: Rojas, I., Pomares, H. (eds) Time Series Analysis and Forecasting. Contributions to Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-28725-6_1

Download citation

Publish with us

Policies and ethics