Skip to main content

AlN Thin Film Processing and Basic Properties

  • Chapter
  • First Online:
Piezoelectric MEMS Resonators

Part of the book series: Microsystems and Nanosystems ((MICRONANO))

Abstract

Piezoelectric thin films are of interest for micro-electromechanical systems (MEMS) since the earliest developments in MEMS technology. This is quite natural or logic because the piezoelectric effect is an electromechanical effect. Resonators and ultrasound wave generators were among the first demonstrated MEMS devices [1–3]. In the 1970s and 1980s, the investigated thin film materials were mainly ZnO and AlN. In the 1990s, PZT was added to the list for having a stronger piezoelectric material for actuators (see, e.g., [4]). For higher-frequency applications, as, e.g., pass band filters for telecommunication in the GHz frequency range, the two wurtzite structures AlN and ZnO remained the champions, simply because they exhibit much higher mechanical quality factors than PZT, and in comparison to LiNbO3, they are much more easily grown in thin film form. Moreover, integration and process compatibility with the rest of the device are less difficult using the relatively simple wurtzite materials. The strong polarity of their crystalline structure allows for a polar growth and a stable piezoelectric response with time, whereas ferroelectrics always risk depoling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grudkowski TW, Black JF, Reeder TM, Cullen DE, Wagner RA (1980) Fundamental-mode VHF-UHF miniature acoustic resonators and filters on silicon. Appl Phys Lett 37:993–995

    Article  Google Scholar 

  2. Uozumi K, Ohsone K, White RM (1983) Generation and detection of ultrasonic lamb waves in a thin deposited film using interdigital transducers. Appl Phys Lett 43:917–919

    Article  Google Scholar 

  3. Nakamura K, Sasaki H, Shimizu H (1981) ZnO/SiO2-diaphragm composite resonator on a silicon wafer. Electron Lett 17(14):507–509

    Article  Google Scholar 

  4. Muralt P (2008) Recent progress in materials issues for piezoelectric MEMS. J Am Ceram Soc 91:1385–1396

    Article  Google Scholar 

  5. Lakin KM, Mccarron KT, Rose RE (1995) Solidly mounted resonators and filters. In: IEEE ultrasonics symposium. IEEE, Seattle, Washington, USA

    Google Scholar 

  6. Ruby R, Bradley P, Larson JD, Oshmyansky Y (1999) PCS 1900MHz duplexer using thin film bulk acoustic resonators (FBARs). Electron Lett 35:794–795

    Article  Google Scholar 

  7. Aigner R, Ella J, Timme H-J, Elbrecht L, Nessler W, Marksteiner S (2002) Advancement of MEMS into RF applications. In: Electron devices meeting IEDM'02

    Google Scholar 

  8. Schulz H, Thiemann KH (1977) Crystal structure refinement of AlN and GaN. Solid State Comm 23:815–819

    Article  Google Scholar 

  9. Jeffrey GA, Parray GS, Mozzi RL (1955) Study of the wurtzite-type binary compounds. I. Structures of AlN ad BeO. J Chem Phys 25(5):1024–1031

    Article  Google Scholar 

  10. Shannon (1976) Acta Cryst A 32:75

    Google Scholar 

  11. Sengstag T, Binggeli N, Baldereschi A (1995) Anomalies in the pressure dependence of the effective charge in cubic semiconductors. Phys Rev B 52(12):R8613–R8616

    Article  Google Scholar 

  12. Ferrara P, Binggeli N, Baldereschi A (1997) Band discontinuities in zinc-blende and wurtzite AlN/SiC. Phys Rev B 55(12):R7418–R7421

    Article  Google Scholar 

  13. Keffer F, Portis AM (1957) Study of the wurtzite-type binary compounds. II. Macroscopic theory of the distortion and polarization. J Chem Phys 27(3):675–682

    Article  Google Scholar 

  14. Zhuang D, Edgar JH (2005) Wet etching of GaN, AlN, and SiC: a review. Mater Sci Eng R 48:1–46

    Article  Google Scholar 

  15. Bernardini F, Fiorentini V, Vanderbilt D (1997) Phys Rev B 56:R10024

    Google Scholar 

  16. Hellman ES (1998) MRS Internet J Nitride Semicond Res 3:11

    Article  Google Scholar 

  17. Muralt P (2001) Stress coupled phenomena. In: Encyclopedia of materials: science and technology. In: Buschow JKH, Cahn RW, Flemings MC, Ilschner B (ed) Elsevier, pp 8894–8897

    Google Scholar 

  18. King-Smith RD, Vanderbilt D (1993) Theory of polarization of crystalline solids. Phys Rev B 47:1651–1654

    Article  Google Scholar 

  19. Bernardini F (2007) Spontaneous and piezoelectric polarization: basic theory vs. practical recipes. In: Piprek J (ed) Nitride semiconductor devices, Wiley-VCH, Newark, USA, pp 49–68

    Google Scholar 

  20. Zoroddu A, Bernardini F, Ruggerone P, Fiorentini V (2001) First-principles prediction of structure, energetics, formation enthalpy, elastic constants, polarization, and piezoelectric constants of AlN, GaN, and InN: comparison of local and gradient-corrected density functional theory. Phys Rev B 64:045208

    Article  Google Scholar 

  21. Jin L, Zhang H-Y, Han J-C, Yao T, Song B (2015) Control of AlN single crystal nucleation: an insight into the crystal growth habit in the initial stages of the physical vapor transport method. Mater Express 5(2):129–136

    Google Scholar 

  22. Shi S-C, Chattopadhyay S, Chen C-F, Chen K-H, Chen L-C (2006) Structural evolution of AlN nano-structures: nanotips and nanorods. Chem Phys Lett 418:152–157

    Article  Google Scholar 

  23. Dreyer CE, Janotti A, Van De Walle CG (2015) Brittle fracture toughnesses of GaN and AlN from first-principles surface-energy calculations. Appl Phys Lett 106:212103

    Article  Google Scholar 

  24. Mahieu S, Ghekiere P, Dewinter G, Heiwegh S, Depla D, Degryse R, Lebedev O, Vantendeloo G (2005) Mechanism of preferential orientation in sputter deposited TiN and YSZ. J Cryst Growth 279:100–109

    Article  Google Scholar 

  25. Deng R, Muralt P, Gall D (2012) Biaxial texture development in aluminum nitride layers during off-axis sputter deposition. J Vac Sci Techn A 30:051501

    Article  Google Scholar 

  26. Milyutin E, Harada S, Martin D, Carlin JF, Grandjean N, Savu V, Vasquez-Mena O, Brugger J, Muralt P (2010) Sputtering of (001) AlN thin films: control of polarity by a seed layer. J Vac Sci Techn B 28(6):L61–L63

    Article  Google Scholar 

  27. Milyutin E, Muralt P (2011) Electro-mechanical coupling in shear mode FBAR with piezoelectric modulated thin film. IEEE Trans UFFC Lett 685(4):685–688

    Article  Google Scholar 

  28. Artieda A, Sandu CS, Muralt P (2010) Highly piezoelectric AlN thin films grown on amorphous, insulating substrates. J Vac Sci Techn A 28:390–393

    Article  Google Scholar 

  29. Tsubouchi K, Sugai K, Mikoshiba N (1981) AlN material constants evaluation and SAW properties of AlN/Al2O3 and AlN/Si. In: IEEE ultrasonics symposium

    Google Scholar 

  30. Dubois M-A, Muralt P (1999) Properties of AlN thin films for piezoelectric transducers and microwave filter applications. Appl Phys Lett 74:3032–3034

    Article  Google Scholar 

  31. Shinoki F, Itoh A (1975) Mechanisms of rf reactive sputtering. J Appl Phys 46(8):3381–3384

    Article  Google Scholar 

  32. Martin F, Muralt P, Dubois M-A, Pezous A (2004) Thickness dependence of properties of highly c-axis textured AlN thin films. J Vac Sci Techn A 22:361–365

    Article  Google Scholar 

  33. Bjurstrom J, Wingqvist G, Katardjiev I (2095) Synthesis of textured thin piezoelectric AlN films with a nonzero c-axis mean tilt for the fabrication of shear mode resonators. IEEE Trans UFFC 53(11):2095–2100

    Article  Google Scholar 

  34. Thornton JA (1986) The microstructure of sputter deposited coatings. JVSTA 4:3059–3065

    Google Scholar 

  35. Dubois M, Muralt P, Sagalowicz L (1999) Aluminum nitride thin films for microwave filter and microsystem applications. In: Wun-Fogle KUM, Ito Y, Gotthardt R (eds) Materials research meeting. Materials Research Society, Boston, pp 9–14

    Google Scholar 

  36. Engelmark F, Iriarte GV, Katardjiev I, Ottossen M, Muralt P, Berg S (2001) Structural and electroacoustic studies of AlN thin films during low temperature radio frequency sputter deposition. J Vac Sci Techn A 19:2664–2669

    Article  Google Scholar 

  37. Drusedau TP, Blasing J (2000) Optical and structural properties of highly c-axis oriented nitride prepared by sputter deposition in pure nitride. Thin Solid Films 377:27–31

    Article  Google Scholar 

  38. Takikawa H, Kimura K, Miyano R, Sakakibara T, Bendavid A, Martin PJ, Matsumuro A, Tsutsumi K (2001) Effect of substrate bias on AlN thin film preparation in shielded reactive vacuum arc deposition. Thin Solid Films 386:276–280

    Article  Google Scholar 

  39. Dubois M-A, Muralt P (2001) Stress and piezoelectric properties of AlN thin films deposited onto metal electrodes by pulsed direct current reactive sputtering. J Appl Phys 89:6389–6395

    Article  Google Scholar 

  40. Dubois M, Muralt P, Matsumoto H, Plessky V (1998) Solidly mounted resonator based on AlN thin film. In: IEEE ultrasonics symposium. Sendai, Japan

    Google Scholar 

  41. Ricard A (1995) Plasma réactifs. Société Français du Vide (sfv). 156

    Google Scholar 

  42. Löbl HP, Klee M, Metzmacher C, Brand W, Milsom R, Lok P (2003) Piezoelectric thin AlN films for bulk acoustic wave resonators. Mater Chem Phys 79:143–146

    Article  Google Scholar 

  43. Martin F, Muralt P, Dubois M (2004) Investigation of highly c-axis orientated AlN thin film regrowth. In: Ultrasonics symposium. IEEE, Montreal (Can)

    Google Scholar 

  44. Artieda A, Barbieri M, Sandu CS, Muralt P (2009) Effect of substrate roughness on c-oriented AlN thin films. J Appl Phys 105:024504

    Article  Google Scholar 

  45. Akiyama M, Kamohara T, Kano K, Teshigahara A, Kawahara N (2008) Influence of oxygen concentration in sputter gas on piezoelectric response of aluminum nitride thin films. Appl Phys Lett 93:021903

    Article  Google Scholar 

  46. Newnham RE (2004) Properties of materials: anisotropy, symmetry, structure. Oxford University Press, New York, p 380

    Google Scholar 

  47. Tsubouchi K, Mikoshiba N (1985) Zero-temperature coefficient SAW devices on AlN epitaxial films. IEEE Trans Sonics Ultrasonics SU-32:634–644

    Article  Google Scholar 

  48. Sotnikov AV, Schmidt H, Weihnacht M, Smirnova EP, Chemekova TY, Makarov YN (2010) Elastic and piezoelectric properties of AlN and LiAlO2 single crystals. IEEE Trans UFFC 57(4):808–811

    Article  Google Scholar 

  49. Konno A, Kadota M, Kushibiki J-I, Ohashi Y., Esashi M, Yamamoto Y, Tanaka S (2014) Determination of full material constants of ScAlN thin film from bulk and leaky lamb wavesin MEMS based samples. In: IEEE international ultrasonics symposium. IEEE, Chicago

    Google Scholar 

  50. Kamiya T (1996) Calculation of crystal structures, dielectric constants and piezoelectric properties of Wurtzite-Type crystals using ab-initio periodic Hartree-Fock method. Jpn J Appl Phys 41:4421–4426

    Article  Google Scholar 

  51. Mazzalai A, Balma D, Chidambaram N, Matloub R, Muralt P (2015) Characterization and fatigue of the converse piezoelectric effect in PZT films for MEMS applications. J MEMS 24:831–838

    Article  Google Scholar 

  52. Lakin KM, Belsick J, Mcdonald JF, Mccarron KT (2001) Improved bulk wave resonator coupling coefficient for wide bandwidth filters. In: IEEE ultrasonics symposium. IEEE, Atlanta, GA, USA

    Google Scholar 

  53. Matloub R, Hadad M, Mazzalai A, Chidambaram N, Moulard G, Sandu C, Metzger T, Muralt P (2013) Piezoelectric AlScN thin films: a semiconductor compatible solution for mechanical energy harvesting and sensors. Appl Phys Lett 102:152903

    Article  Google Scholar 

  54. Moreira M, Bjurstrom J, Katardjiev I, Yantchev V (2011) Aluminum scandium nitride thin film bulk acoustic resonators for wide band applications. Vacuum 86:23–26

    Article  Google Scholar 

  55. Tasnadi F, Alling B, Höglund C, Wingqvist G, Birch J, Hultman L, Abrikosov A (2010) Origin of the anomalous piezoelectric response in wurtzite ScAlN alloys. Phys Rev Lett 104:137601

    Article  Google Scholar 

  56. Zhang S, Fu WY, Holec D, Humphreys CJ, Moram MA (2013) Elastic constants and critical thicknesses of ScGaN and ScAlN. J Appl Phys 114:243516

    Article  Google Scholar 

  57. Caro MA, Zhang S, Ylilammi M, Riekkinen T, Moram M, Lopez-Acevedo O, Molarius J, Laurila T (2015) Piezoelectric coefficients and spontaneous polarization of AlScN. J Phys Condens Matter 27:245901

    Article  Google Scholar 

  58. Moulson AJ, Herbert JM (1990) Electroceramics. Chapman & Hall, London

    Google Scholar 

  59. Ikeda T (1990) Fundamentals of piezoelectricity. University Press, Oxford

    Google Scholar 

  60. Gualtieri JG, Kosinski JA, Ballato A (1994) Piezoelectric materials for acoustic wave applications. IEEE UFFC 41:53–59

    Article  Google Scholar 

  61. Piazza G, Pisano AP (2007) Two-port stacked piezoelectric aluminum nitride contour-mode resonant MEMS. Sensor Actuator A 136:638–645

    Article  Google Scholar 

  62. Lanz R, Muralt P (2005) Bandpass filters for 8 GHz using solidly mounted bulk acoustic wave resonators. IEEE Trans UFFC 52:936–946

    Article  Google Scholar 

  63. Dubois M-A, Muralt P (1999) Measurement of the effective transverse piezoelectric coefficient e31, f of AlN and PZT thin films. Sensor Actuator A 77:106–112

    Article  Google Scholar 

  64. Prume K, Muralt P, Schmitz-Kempen CFT, Tiedke S (2007) Piezoelectric thin films: evaluation of electrical and electromechanical characteristics for MEMS devices. IEEE Trans UFFC 54:8–14

    Article  Google Scholar 

  65. Shepard JF, Moses PJ, Trolier-Mckinstry S (1998) The wafer flexure technique for the determination of the transverse piezoelectric coefficient (d31) of PZT thin films. Sensor Actuator A 71:133–138

    Article  Google Scholar 

  66. Kanno I, Fujii S, Kamada T, Takayama R (1997) Piezoelectric properties of c-axis oriented PZT thin films. Appl Phys Lett 70:1378–1380

    Article  Google Scholar 

  67. Fujii E, Takayama R, Nomura K, Murata A, Hirasawa T, Tomozawa A, Fujii S, Kamada T, Torii H (2007) Preparation of (001)-oriented PZT thin films and their piezoelectric applications. IEEE Trans UFFC 54:2431–2438

    Article  Google Scholar 

  68. Barzegar A, Damjanovic D, Ledermann N, Muralt P (2003) Piezoelectric response of thin film determined by charge integration technique: substrate bending effects. J Appl Phys 93:4756–4760

    Article  Google Scholar 

  69. Akiyama M, Kano K, Teshigahara A (2009) Influence of growth temperature and scandium concentration on piezoelectric response of ScAlN alloy thin films. Appl Phys Lett 95:162107

    Article  Google Scholar 

  70. Hopcroft MA, Nix WD, Kenny TW (2010) What is the Young’s modulus of silicon? J Microelectromech Syst 19:229–238

    Article  Google Scholar 

  71. Chidambaram N, Mazzalai A, Muralt P (2012) Measurement of effective piezoelectric coefficients of PZT thin films for energy harvesting applications with interdigitated electrodes. IEEE Trans UFFC 59:1624–1631

    Article  Google Scholar 

  72. Bernardini F, Fiorentini V (2002) First-principles calculation of the piezoelectric tensor d of III-V nitrides. Appl Phys Lett 80:4145–4147

    Article  Google Scholar 

  73. Akiyama M, Kamohara T, Kano K, Teshigahara A, Takeuchi Y, Kawahara N (2009) Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering. Adv Mat 21:593–596

    Article  Google Scholar 

  74. Alsaad A, Ahmad A (2006) Piezoelectricity of ordered Sc-Ga-N alloys from first principles. Eur Phys J B 54:151–156

    Article  Google Scholar 

  75. Gall D, Petrov I, Hellgren N, Hultman L, Sundgren JE, Greene JE (1998) Growth of poly-and single crystal ScN on MgO(001): role of low-energy (N2)+ irradiation in determining texture, microstructure evolution, and mechanical properties. J Appl Phys 84:6034–6041

    Article  Google Scholar 

  76. Deng R, Evans SR, Gall D (2013) Bandgap in AlScN. Appl Phys Lett 102:112103

    Article  Google Scholar 

  77. Farrer N, Bellaiche L (2002) Properties of hexagonal ScN versus wurtzite GaN and InN. Phys Rev B 66

    Google Scholar 

  78. Matloub R, Artieda A, Milyutin E, Muralt P (2011) Electromechanical properties of Al0.9Sc0.1N thin films evaluated at 2.5 GHz film bulk acoustic wave resonators. Appl Phys Lett 99

    Google Scholar 

  79. Akiyama M, Umeda K, Honda A, Nagase T (2013) Influence of Sc concentration on power generation figure of merit of ScAlN thin films. Appl Phys Lett 102:021915

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Muralt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Muralt, P. (2017). AlN Thin Film Processing and Basic Properties. In: Bhugra, H., Piazza, G. (eds) Piezoelectric MEMS Resonators. Microsystems and Nanosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-28688-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28688-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28686-0

  • Online ISBN: 978-3-319-28688-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics