Skip to main content

The Ageing Brain, Mitochondria and Neurodegeneration

  • Chapter
  • First Online:
Mitochondrial Dysfunction in Neurodegenerative Disorders

Abstract

The brain is a complex and energy-demanding organ, which like any organ is subject to the ravages of time. Mitochondria are synonymous with their role in energy production, which is particularly critical to high-energy-demanding cells such as neurons.

Here we discuss ageing of the brain, initially setting the scene by introducing the core concepts associated with brain ageing; discussing the physiological, genetic and cognitive changes which occur over time; and subsequently introducing the roles that mitochondria play in the ‘normal’ brain ageing process.

The final section of the chapter discusses the role of both inherited and somatic mitochondrial DNA variation in neurodegeneration, initially in the context of primary mitochondrial disorders (such as Leber’s hereditary optic neuropathy, myoclonic epilepsy and ragged-red fibres and mitochondrial encephalomyopathy lactic acidosis and stroke-like episodes) and subsequently in the context of common, but more complex, neurodegenerative diseases such as Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, amyotrophic lateral sclerosis, Friedreich’s ataxia, hereditary spastic paraplegia and multiple sclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Svennerholm L, Bostrom K, Jungbjer B. Changes in weight and compositions of major membrane components of human brain during the span of adult human life of Swedes. Acta Neuropathol. 1997;94(4):345–52.

    Article  CAS  PubMed  Google Scholar 

  2. Scahill RI, Frost C, Jenkins R, Whitwell JL, Rossor MN, Fox NC. A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging. Arch Neurol Chicago. 2003;60(7):989–94.

    Article  PubMed  Google Scholar 

  3. Trollor JN, Valenzuela MJ. Brain ageing in the new millennium. Aust N Z J Psychiatry. 2001;35(6):788–805.

    Article  CAS  PubMed  Google Scholar 

  4. Esiri MM, Wilcock GK, Morris JH. Neuropathological assessment of the lesions of significance in vascular dementia. J Neurol Neurosurg Psychiatry. 1997;63(6):749–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jernigan TL, Archibald SL, Fennema-Notestine C, Gamst AC, Stout JC, Bonner J, et al. Effects of age on tissues and regions of the cerebrum and cerebellum. Neurobiol Aging. 2001;22(4):581–94.

    Article  CAS  PubMed  Google Scholar 

  6. Raz N. The ageing brain: structural changes and their implications for cognitive ageing. In: Dixon R, Bäckman L, Nilssonn L, editors. New frontiers in cognitive ageing. New York: Oxford University Press; 2004.

    Google Scholar 

  7. Burke SN, Barnes CA. Neural plasticity in the ageing brain. Nat Rev Neurosci. 2006;7(1):30–40.

    Article  CAS  PubMed  Google Scholar 

  8. Kolb B, Gibb R, Robinson TE. Brain plasticity and behavior. Curr Dir Psychol Sci. 2003;12(1):1–5.

    Article  Google Scholar 

  9. Kolb B, Whishaw IQ. Brain plasticity and behavior. Annu Rev Psychol. 1998;49:43–64.

    Article  CAS  PubMed  Google Scholar 

  10. Anderton BH. Ageing of the brain. Mech Ageing Dev. 2002;123(7):811–7.

    Article  CAS  PubMed  Google Scholar 

  11. Flood DG, Buell SJ, Horwitz GJ, Coleman PD. Dendritic extent in human dentate gyrus granule cells in normal aging and senile dementia. Brain Res. 1987;402(2):205–16.

    Article  CAS  PubMed  Google Scholar 

  12. Head D, Buckner RL, Shimony JS, Williams LE, Akbudak E, Conturo TE, et al. Differential vulnerability of anterior white matter in nondemented aging with minimal acceleration in dementia of the Alzheimer type: evidence from diffusion tensor imaging. Cereb Cortex. 2004;14(4):410–23.

    Article  PubMed  Google Scholar 

  13. Gray DA, Woulfe J. Lipofuscin and aging: a matter of toxic waste. Sci Aging Knowledge Environ. 2005;2005(5):re1.

    Article  PubMed  Google Scholar 

  14. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–59.

    Article  CAS  PubMed  Google Scholar 

  15. Kahn J, Anderton BH, Probst A, Ulrich J, Esiri MM. Immunohistological study of granulovacuolar degeneration using monoclonal-antibodies to neurofilaments. J Neurol Neurosurg Psychiatry. 1985;48(9):924–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu M, Shibayama H, Kobayashi H, Yamada K, Ishihara R, Zhao P, et al. Granulovacuolar degeneration in the hippocampal cortex of aging and demented patients – a quantitative study. Acta Neuropathol. 1992;85(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  17. Gibson PH, Tomlinson BE. Numbers of Hirano bodies in the hippocampus of normal and demented people with Alzheimer’s disease. J Neurol Sci. 1977;33(1–2):199–206.

    Article  CAS  PubMed  Google Scholar 

  18. Galloway PG, Perry G, Gambetti P. Hirano body filaments contain actin and actin-associated proteins. J Neuropathol Exp Neurol. 1987;46(2):185–99.

    Article  CAS  PubMed  Google Scholar 

  19. Dickson DW, Liu WK, Kress Y, Ku J, DeJesus O, Yen SH. Phosphorylated tau immunoreactivity of granulovacuolar bodies (GVB) of Alzheimer’s disease: localization of two amino terminal tau epitopes in GVB. Acta Neuropathol. 1993;85(5):463–70.

    Article  CAS  PubMed  Google Scholar 

  20. Smith EE, Schneider JA, Wardlaw JM, Greenberg SM. Cerebral microinfarcts: the invisible lesions. Lancet Neurol. 2012;11(3):272–82.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Saunders AM, Strittmatter WJ, Schmechel D, George-Hyslop PH, Pericak-Vance MA, Joo SH, et al. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology. 1993;43(8):1467–72.

    Article  CAS  PubMed  Google Scholar 

  22. Deary IJ, Whiteman MC, Pattie A, Starr JM, Hayward C, Wright AF, et al. Apolipoprotein E gene variability and cognitive functions at age 79: a follow-up of the Scottish Mental Survey of 1932. Psychol Aging. 2004;19(2):367–71.

    Article  PubMed  Google Scholar 

  23. Jorm AF, Mather KA, Butterworth P, Anstey KJ, Christensen H, Easteal S. APOE genotype and cognitive functioning in a large age-stratified population sample. Neuropsychology. 2007;21(1):1–8.

    Article  PubMed  Google Scholar 

  24. Lu L, Airey DC, Williams RW. Complex trait analysis of the hippocampus: mapping and biometric analysis of two novel gene loci with specific effects on hippocampal structure in mice. J Neurosci. 2001;21(10):3503–14.

    CAS  PubMed  Google Scholar 

  25. Lee CK, Weindruch R, Prolla TA. Gene-expression profile of the ageing brain in mice. Nat Genet. 2000;25(3):294–7.

    Article  CAS  PubMed  Google Scholar 

  26. Tsugita A, Kawakami T, Uchida T, Sakai T, Kamo M, Matsui T, et al. Proteome analysis of mouse brain: two-dimensional electrophoresis profiles of tissue proteins during the course of aging. Electrophoresis. 2000;21(9):1853–71.

    Article  CAS  PubMed  Google Scholar 

  27. Henley JM, Wilkinson KA. AMPA receptor trafficking and the mechanisms underlying synaptic plasticity and cognitive aging. Dialogues Clin Neurosci. 2013;15(1):11–27.

    PubMed  PubMed Central  Google Scholar 

  28. Magnusson KR, Brim BL, Das SR. Selective vulnerabilities of N-methyl-D-aspartate (NMDA) receptors during brain aging. Front Aging Neurosci. 2010;2:11.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Limon A, Reyes-Ruiz JM, Miledi R. Loss of functional GABA(A) receptors in the Alzheimer diseased brain. Proc Natl Acad Sci U S A. 2012;109(25):10071–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lu T, Pan Y, Kao SY, Li C, Kohane I, Chan J, et al. Gene regulation and DNA damage in the ageing human brain. Nature. 2004;429(6994):883–91.

    Article  CAS  PubMed  Google Scholar 

  31. Mayeux R, Small SA, Tang MX, Tycko B, Stern Y. Memory performance in healthy elderly without Alzheimer’s disease: effects of time and apolipoprotein-E. Neurobiol Aging. 2001;22(4):683–9.

    Article  CAS  PubMed  Google Scholar 

  32. Parkin A. Human-memory and amnesia – Cermak, Ls. Q J Exp Psychol A. 1983;35(Aug):544–5.

    Google Scholar 

  33. Nyberg L, Bäckman L. Cognitive ageing: a view from brain imaging. In: Dixon R, Bäckman L, Nilsson L, editors. New frontiers in cognitive ageing. New York: Oxford University Press; 2004.

    Google Scholar 

  34. Lustig C, Buckner RL. Preserved neural correlates of priming in old age and dementia. Neuron. 2004;42(5):865–75.

    Article  CAS  PubMed  Google Scholar 

  35. Sweet JJ, Suchy Y, Leahy B, Abramowitz C, Nowinski CJ. Normative clinical relationships between orientation and memory: age as an important moderator variable. Clin Neuropsychol. 1999;13(4):495–508.

    Article  CAS  PubMed  Google Scholar 

  36. Hopp GA, Dixon RA, Grut M, Bäckman L. Longitudinal and psychometric profiles of two cognitive status tests in very old adults. J Clin Psychol. 1997;53(7):673–86.

    Article  CAS  PubMed  Google Scholar 

  37. Kensinger EA. Cognition in aging and age related disease. In: Hof PR, Mobbs CV, editors. Handbook of the neuroscience of aging. London: Elsevier; 2009. p. 249–56.

    Google Scholar 

  38. Cabeza R. Cognitive neuroscience of aging: contributions of functional neuroimaging. Scand J Psychol. 2001;42(3):277–86.

    Article  CAS  PubMed  Google Scholar 

  39. Compton J, van Amelsvoort T, Murphy D. HRT and its effect on normal ageing of the brain and dementia. Br J Clin Pharmacol. 2001;52(6):647–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ibanez V, Pietrini P, Furey ML, Alexander GE, Millet P, Bokde AL, et al. Resting state brain glucose metabolism is not reduced in normotensive healthy men during aging, after correction for brain atrophy. Brain Res Bull. 2004;63(2):147–54.

    Article  CAS  PubMed  Google Scholar 

  41. Toescu EC, Verkhratsky A, Landfield PW. Ca2+ regulation and gene expression in normal brain aging. Trends Neurosci. 2004;27(10):614–20.

    Article  CAS  PubMed  Google Scholar 

  42. Melov S. Modeling mitochondrial function in aging neurons. Trends Neurosci. 2004;27(10):601–6.

    Article  CAS  PubMed  Google Scholar 

  43. Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell. 2005;120(4):483–95.

    Article  CAS  PubMed  Google Scholar 

  44. Magistretti PJ, Pellerin L. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philos Trans R Soc B. 1999;354(1387):1155–63.

    Article  CAS  Google Scholar 

  45. LaFrance R, Brustovetsky N, Sherburne C, Delong D, Dubinsky JM. Age-related changes in regional brain mitochondria from Fischer 344 rats. Aging Cell. 2005;4(3):139–45.

    Article  CAS  PubMed  Google Scholar 

  46. Navarro A, Boveris A. The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol. 2007;292(2):C670–86.

    Article  CAS  PubMed  Google Scholar 

  47. Navarro A. Mitochondrial enzyme activities as biochemical markers of aging. Mol Aspects Med. 2004;25(1–2):37–48.

    Article  CAS  PubMed  Google Scholar 

  48. Barrientos A, Casademont J, Cardellach F, Estivill X, Urbano-Marquez A, Nunes V. Reduced steady-state levels of mitochondrial RNA and increased mitochondrial DNA amount in human brain with aging. Mol Brain Res. 1997;52(2):284–9.

    Article  CAS  PubMed  Google Scholar 

  49. Hirai K, Aliev G, Nunomura A, Fujioka H, Russell RL, Atwood CS, et al. Mitochondrial abnormalities in Alzheimer’s disease. J Neurosci. 2001;21(9):3017–23.

    CAS  PubMed  Google Scholar 

  50. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. New York: Oxford University Press; 1999.

    Google Scholar 

  51. Navarro A, Boveris A. Brain mitochondrial dysfunction in aging, neurodegeneration, and Parkinson’s disease. Front Aging Neurosci. 2010;2:34.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ceballospicot I, Nicole A, Clement M, Bourre JM, Sinet PM. Age-related-changes in antioxidant enzymes and lipid-peroxidation in brains of control and transgenic mice overexpressing copper-zinc superoxide-dismutase. Mutat Res. 1992;275(3–6):281–93.

    Article  CAS  Google Scholar 

  53. Pollack M, Leeuwenburgh C. Apoptosis and aging: role of the mitochondria. J Gerontol A Biol Sci Med Sci. 2001;56(11):B475–82.

    Article  CAS  PubMed  Google Scholar 

  54. Swerdlow RH. Mitochondria and cell bioenergetics: increasingly recognized components and a possible etiologic cause of Alzheimer’s disease. Antioxid Redox Signal. 2012;16(12):1434–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Swerdlow RH. Brain aging, Alzheimer’s disease, and mitochondria. BBA Mol Basis Dis. 2011;1812(12):1630–9.

    Article  CAS  Google Scholar 

  56. Payne BAI, Wilson IJ, Yu-Wai-Man P, Coxhead J, Deehan D, Horvath R, et al. Universal heteroplasmy of human mitochondrial DNA. Hum Mol Genet. 2013;22(2):384–90.

    Article  CAS  PubMed  Google Scholar 

  57. Torroni A, Huoponen K, Francalacci P, Petrozzi M, Morelli L, Scozzari R, et al. Classification of European mtDNAs from an analysis of three European populations. Genetics. 1996;144(4):1835–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Gomez-Duran A, Pacheu-Grau D, Martinez-Romero I, López-Gallardo E, López-Pérez MJ, Montoya J, et al. Oxidative phosphorylation differences between mitochondrial DNA haplogroups modify the risk of Leber’s hereditary optic neuropathy. Biochim Biophys Acta. 2012;1822(8):1216–22.

    Article  CAS  PubMed  Google Scholar 

  59. Pello R, Martin MA, Carelli V, Nijtmans LG, Achilli A, Pala M, et al. Mitochondrial DNA background modulates the assembly kinetics of OXPHOS complexes in a cellular model of mitochondrial disease. Hum Mol Genet. 2008;17(24):4001–11.

    Article  CAS  PubMed  Google Scholar 

  60. Meissner C, Bruse P, Mohamed SA, Schulz A, Warnk H, Storm T, et al. The 4977 bp deletion of mitochondrial DNA in human skeletal muscle, heart and different areas of the brain: a useful biomarker or more? Exp Gerontol. 2008;43(7):645–52.

    Article  CAS  PubMed  Google Scholar 

  61. Cortopassi GA, Arnheim N. Detection of a specific mitochondrial-DNA deletion in tissues of older humans. Nucleic Acids Res. 1990;18(23):6927–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Corraldebrinski M, Horton T, Lott MT, Shoffner JM, Beal MF, Wallace DC. Mitochondrial-DNA deletions in human brain – regional variability and increase with advanced age. Nat Genet. 1992;2(4):324–9.

    Article  CAS  Google Scholar 

  63. Pickrell AM, Fukui H, Wang X, Pinto M, Moraes CT. The striatum is highly susceptible to mitochondrial oxidative phosphorylation dysfunctions. J Neurosci. 2011;31(27):9895–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fukui H, Moraes CT. Mechanisms of formation and accumulation of mitochondrial DNA deletions in aging neurons. Hum Mol Genet. 2009;18(6):1028–36.

    Article  CAS  PubMed  Google Scholar 

  65. Lin MT, Simon DK, Ahn CH, Kim LM, Beal MF. High aggregate burden of somatic mtDNA point mutations in aging and Alzheimer’s disease brain. Hum Mol Genet. 2002;11(2):133–45.

    Article  CAS  PubMed  Google Scholar 

  66. Williams SL, Mash DC, Zuchner S, Moraes CT. Somatic mtDNA mutation spectra in the aging human putamen. Plos Genet. 2013;9(12):e1003990.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Schneider S, Excoffier L. Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics. 1999;152(3):1079–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Mercer TR, Neph S, Dinger ME, Crawford J, Smith MA, Shearwood AM, et al. The human mitochondrial transcriptome. Cell. 2011;146(4):645–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Epstein CB, Waddle JA, Hale 4th W, Davé V, Thornton J, Macatee TL, et al. Genome-wide responses to mitochondrial dysfunction. Mol Biol Cell. 2001;12(2):297–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Scholte HR. The biochemical basis of mitochondrial diseases. J Bioenerg Biomembr. 1988;20(2):161–91.

    Article  CAS  PubMed  Google Scholar 

  71. Brandon MC, Lott MT, Nguyen KC, Spolim S, Navathe SB, Baldi P, et al. MITOMAP: a human mitochondrial genome database – 2004 update. Nucleic Acids Res. 2005;33:D611–3.

    Article  CAS  PubMed  Google Scholar 

  72. Morais VA, De Strooper B. Mitochondria dysfunction and neurodegenerative disorders: cause or consequence. J Alzheimers Dis. 2010;20:S255–63.

    PubMed  Google Scholar 

  73. Kirches E. LHON: mitochondrial mutations and more. Curr Genomics. 2011;12(1):44–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Carelli V, Ross-Cisneros FN, Sadun AA. Mitochondrial dysfunction as a cause of optic neuropathies. Prog Retin Eye Res. 2004;23(1):53–89.

    Article  CAS  PubMed  Google Scholar 

  75. Beretta S, Mattavelli L, Sala G, Tremolizzo L, Schapira AH, Martinuzzi A, et al. Leber hereditary optic neuropathy mtDNA mutations disrupt glutamate transport in cybrid cell lines. Brain. 2004;127:2183–92.

    Article  PubMed  Google Scholar 

  76. Fukuhara N, Tokiguchi S, Shirakawa K, Tsubaki T. Myoclonus epilepsy associated with ragged-red fibres (mitochondrial abnormalities): disease entity or a syndrome? Light-and electron-microscopic studies of two cases and review of literature. J Neurol Sci. 1980;47(1):117–33.

    Article  CAS  PubMed  Google Scholar 

  77. Shoffner JM, Wallace DC. A mitochondrial transfer rnalys mutation causes myoclonic epilepsy and ragged-red fiber disease. Prog Neuropathol. 1991;7:161–7.

    Google Scholar 

  78. Wallace DC, Zheng XX, Lott MT, Shoffner JM, Hodge JA, Kelley RI, et al. Familial mitochondrial encephalomyopathy (MERRF): genetic, pathophysiological, and biochemical characterization of a mitochondrial DNA disease. Cell. 1988;55(4):601–10.

    Article  CAS  PubMed  Google Scholar 

  79. Rommelaere G, Michel S, Malaisse J, Charlier S, Arnould T, Renard P. Hypersensitivity of A8344G MERRF mutated cybrid cells to staurosporine-induced cell death is mediated by calcium-dependent activation of calpains. Int J Biochem Cell B. 2012;44(1):139–49.

    Article  CAS  Google Scholar 

  80. Zeviani M, Simonati A, Bindoff LA. Ataxia in mitochondrial disorders. Handb Clin Neurol. 2012;103:359–72.

    Article  PubMed  Google Scholar 

  81. Kearns TP. External ophthalmoplegia, pigmentary degeneration of the retina, and cardiomyopathy: a newly recognized syndrome. Trans Am Ophthalmol Soc. 1965;63:559–625.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Goto Y, Horai S, Matsuoka T, Koga Y, Nihei K, Kobayashi M, et al. Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS): a correlative study of the clinical features and mitochondrial DNA mutation. Neurology. 1992;42(3 Pt 1):545–50.

    Article  CAS  PubMed  Google Scholar 

  83. Holt IJ, Harding AE, Petty RK, Morgan-Hughes JA. A new mitochondrial disease associated with mitochondrial DNA heteroplasmy. Am J Hum Genet. 1990;46(3):428–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Winklhofer KF, Haass C. Mitochondrial dysfunction in Parkinson’s disease. BBA Mol Basis Dis. 2010;1802(1):29–44.

    Article  CAS  Google Scholar 

  85. Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD. Mitochondrial complex I deficiency in Parkinson’s disease. Lancet. 1989;1(8649):1269.

    Article  CAS  PubMed  Google Scholar 

  86. Sherer TB, Betarbet R, Testa CM, Seo BB, Richardson JR, Kim JH, et al. Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci. 2003;23(34):10756–64.

    CAS  PubMed  Google Scholar 

  87. Forno LS, Delanney LE, Irwin I, Langston JW. Similarities and differences between Mptp-induced parkinsonism and Parkinson’s disease. Neuropathologic considerations. Adv Neurol. 1993;60:600–8.

    CAS  PubMed  Google Scholar 

  88. Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci. 2000;3(12):1301–6.

    Article  CAS  PubMed  Google Scholar 

  89. Gomez-Duran A, Pacheu-Grau D, Lopez-Gallardo E, Díez-Sánchez C, Montoya J, López-Pérez MJ, et al. Unmasking the causes of multifactorial disorders: OXPHOS differences between mitochondrial haplogroups. Hum Mol Genet. 2010;19(17):3343–53.

    Article  CAS  PubMed  Google Scholar 

  90. Hudson G, Carelli V, Spruijt L, Gerards M, Mowbray C, Achilli A, et al. Clinical expression of Leber hereditary optic neuropathy is affected by the mitochondrial DNA-haplogroup background. Am J Hum Genet. 2007;81(2):228–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fuku N, Park KS, Yamada Y, Nishigaki Y, Cho YM, Matsuo H, et al. Mitochondrial haplogroup N9a confers resistance against type 2 diabetes in Asians. Am J Hum Genet. 2007;80(3):407–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chinnery PF, Elliott HR, Syed A, Rothwell PM, Oxford Vascular Study. Mitochondrial DNA haplogroups and risk of transient ischaemic attack and ischaemic stroke: a genetic association study. Lancet Neurol. 2007;9(5):498–503.

    Article  CAS  Google Scholar 

  93. Kazuno AA, Munakata K, Nagai T, Shimozono S, Tanaka M, Yoneda M, et al. Identification of mitochondrial DNA polymorphisms that alter mitochondrial matrix pH and intracellular calcium dynamics. PLoS Genet. 2006;2(8):1167–77.

    Article  CAS  Google Scholar 

  94. Rose G, Passarino G, Carrieri G, Altomare K, Greco V, Bertolini S, et al. Paradoxes in longevity: sequence analysis of mtDNA haplogroup J in centenarians. Eur J Hum Genet. 2001;9(9):701–7.

    Article  CAS  PubMed  Google Scholar 

  95. Pyle A, Foltynie T, Tiangyou W, Lambert C, Keers SM, Allcock LM, et al. Mitochondrial DNA haplogroup cluster UKJT reduces the risk of PD. Ann Neurol. 2005;57(4):564–7.

    Article  PubMed  Google Scholar 

  96. Ross OA, McCormack R, Maxwell LD, Duguid RA, Quinn DJ, Barnett YA, et al. mt4216C variant in linkage with the mtDNA TJ cluster may confer a susceptibility to mitochondrial dysfunction resulting in an increased risk of Parkinson’s disease in the Irish. Exp Gerontol. 2003;38(4):397–405.

    Article  CAS  PubMed  Google Scholar 

  97. Biffi A, Anderson CD, Nalls MA, Rahman R, Sonni A, Cortellini L, et al. Principal-component analysis for assessment of population stratification in mitochondrial medical genetics. Am J Hum Genet. 2010;86(6):904–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hudson G, Nalls M, Evans JR, Breen DP, Winder-Rhodes S, Morrison KE, et al. Two-stage association study and meta-analysis of mitochondrial DNA variants in Parkinson disease. Neurology. 2013;80(22):2042–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hudson G, Gomez-Duran A, Wilson IJ, Chinnery PF. Recent mitochondrial DNA mutations increase the risk of developing common late-onset human diseases. PLoS Genet. 2014;10(5):e1004369.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Ikebe S, Tanaka M, Ohno K, Sato W, Hattori K, Kondo T, et al. Increase of deleted mitochondrial DNA in the striatum in Parkinson’s disease and senescence. Biochem Biophys Res Commun. 1990;170(3):1044–8.

    Article  CAS  PubMed  Google Scholar 

  101. Schapira AH, Holt IJ, Sweeney M, Harding AE, Jenner P, Marsden CD. Mitochondrial DNA analysis in Parkinson’s disease. Mov Disord. 1990;5(4):294–7.

    Article  CAS  PubMed  Google Scholar 

  102. Lestienne P, Nelson I, Riederer P, Reichmann H, Jellinger K. Mitochondrial DNA in postmortem brain from patients with Parkinson’s disease. J Neurochem. 1991;56(5):1819.

    Article  CAS  PubMed  Google Scholar 

  103. Kraytsberg Y, Kudryavtseva E, McKee AC, Geula C, Kowall NW, Khrapko K. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet. 2006;38(5):518–20.

    Article  CAS  PubMed  Google Scholar 

  104. Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK, Perry RH, et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet. 2006;38(5):515–7.

    Article  CAS  PubMed  Google Scholar 

  105. Kakiuchi C, Ishiwata M, Kametani M, Nelson C, Iwamoto K, Kato T. Quantitative analysis of mitochondrial DNA deletions in the brains of patients with bipolar disorder and schizophrenia. Int J Neuropsychopharmacol. 2005;8(4):515–22.

    Article  CAS  PubMed  Google Scholar 

  106. Corral-Debrinski M, Horton T, Lott MT, Shoffner JM, Beal MF, Wallace DC. Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nat Genet. 1992;2(4):324–9.

    Article  CAS  PubMed  Google Scholar 

  107. Nadasi E, Melegh B, Seress L, Kosztolányi G. Mitochondrial DNA deletions in newborn brain samples. Orv Hetil. 2004;145(25):1321–5.

    PubMed  Google Scholar 

  108. Shoffner JM, Brown MD, Torroni A, Lott MT, Cabell MF, Mirra SS, et al. Mitochondrial DNA variants observed in Alzheimer disease and Parkinson disease patients. Genomics. 1993;17(1):171–84.

    Article  CAS  PubMed  Google Scholar 

  109. Parker Jr WD, Parks JK. Mitochondrial ND5 mutations in idiopathic Parkinson’s disease. Biochem Biophys Res Commun. 2005;326(3):667–9.

    Article  CAS  PubMed  Google Scholar 

  110. Burns A, Iliffe S. Alzheimer’s disease. BMJ. 2009;338:b158.

    Article  PubMed  Google Scholar 

  111. Anandatheerthavarada HK, Biswas G, Robin MA, Avadhani NG. Mitochondrial targeting and a novel transmembrane arrest of Alzheimer’s amyloid precursor protein impairs mitochondrial function in neuronal cells. J Cell Biol. 2003;161(1):41–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Manczak M, Anekonda TS, Henson E, Park BS, Quinn J, Reddy PH. Mitochondria are a direct site of A beta accumulation in Alzheimer’s disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet. 2006;15(9):1437–49.

    Article  CAS  PubMed  Google Scholar 

  113. Melov S, Adlard PA, Morten K, Johnson F, Golden TR, Hinerfeld D, et al. Mitochondrial oxidative stress causes hyperphosphorylation of tau. PLoS One. 2007;2(6):e536.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Lakatos A, Derbeneva O, Younes D, Keator D, Bakken T, Lvova M, et al. Association between mitochondrial DNA variations and Alzheimer’s disease in the ADNI cohort. Neurobiol Aging. 2010;31(8):1355–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Santoro A, Balbi V, Balducci E, Pirazzini C, Rosini F, Tavano F, et al. Evidence for sub-haplogroup h5 of mitochondrial DNA as a risk factor for late onset alzheimer’s disease. PLoS One. 2010;5(8):e12037.

    Google Scholar 

  116. Kruger J, Hinttala R, Majamaa K, Remes AM. Mitochondrial DNA haplogroups in early-onset alzheimer’s disease and frontotemporal lobar degeneration. Mol Neurodegener. 2010;5:8.

    Google Scholar 

  117. Maruszak A, Canter JA, Styczynska M, Zekanowski C, Barcikowska M. Mitochondrial haplogroup H and Alzheimer’s disease – is there a connection? Neurobiol Aging. 2009;30(11):1749–55.

    Article  CAS  PubMed  Google Scholar 

  118. van der Walt JM, Dementieva YA, Martin ER, Scott WK, Nicodemus KK, Kroner CC, et al. Analysis of European mitochondrial haplogroups with Alzheimer disease risk. Neurosci Lett. 2004;365(1):28–32.

    Article  PubMed  CAS  Google Scholar 

  119. Carrieri G, Bonafe M, De Luca M, Rose G, Varcasia O, Bruni A, et al. Mitochondrial DNA haplogroups and APOE4 allele are non-independent variables in sporadic Alzheimer’s disease. Hum Genet. 2001;108(3):194–8.

    Article  CAS  PubMed  Google Scholar 

  120. Chagnon P, Gee M, Filion M, Robitaille Y, Belouchi M, Gauvreau D. Phylogenetic analysis of the mitochondrial genome indicates significant differences between patients with Alzheimer disease and controls in a French-Canadian founder population. Am J Med Genet. 1999;85(1):20–30.

    Article  CAS  PubMed  Google Scholar 

  121. Hudson G, Sims R, Harold D, Chapman J, Hollingworth P, Gerrish A, et al. No consistent evidence for association between mtDNA variants and Alzheimer disease. Neurology. 2012;78(14):1038–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Swerdlow RH, Parks JK, Cassarino DS, Maguire DJ, Maguire RS, Bennett Jr JP, et al. Cybrids in Alzheimer’s disease: a cellular model of the disease? Neurology. 1997;49(4):918–25.

    Article  CAS  PubMed  Google Scholar 

  123. Tanaka N, Goto Y, Akanuma J, Kato M, Kinoshita T, Yamashita F, et al. Mitochondrial DNA variants in a Japanese population of patients with Alzheimer’s disease. Mitochondrion. 2010;10(1):32–7.

    Article  CAS  PubMed  Google Scholar 

  124. Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, Wang N, et al. ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science. 2004;304(5669):448–52.

    Article  CAS  PubMed  Google Scholar 

  125. Cortopassi GA, Shibata D, Soong NW, Arnheim N. A pattern of accumulation of a somatic deletion of mitochondrial-DNA in aging human tissues. Proc Natl Acad Sci U S A. 1992;89(16):7370–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chang SW, Zhang DK, Chung HD, Zassenhaus HP. The frequency of point mutations in mitochondrial DNA is elevated in the Alzheimer’s brain. Biochem Biophys Res Commun. 2000;273(1):203–8.

    Article  CAS  PubMed  Google Scholar 

  127. Coskun PE, Beal MF, Wallace DC. Alzheimer’s brains harbor somatic mtDNA control-region mutations that suppress mitochondrial transcription and replication. Proc Natl Acad Sci U S A. 2004;101(29):10726–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Damiano M, Galvan L, Deglon N, Brouillet E. Mitochondria in Huntington’s disease. Biochim Biophys Acta. 2010;1802(1):52–61.

    Article  CAS  PubMed  Google Scholar 

  129. Panov AV, Gutekunst CA, Leavitt BR, Hayden MR, Burke JR, Strittmatter WJ, et al. Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines. Nat Neurosci. 2002;5(8):731–6.

    CAS  PubMed  Google Scholar 

  130. Siddiqui A, Rivera-Sanchez S, Castro MD, Acevedo-Torres K, Rane A, Torres-Ramos CA, et al. Mitochondrial DNA damage is associated with reduced mitochondrial bioenergetics in Huntington’s disease. Free Radic Biol Med. 2012;53(7):1478–88.

    Article  CAS  PubMed  Google Scholar 

  131. Banoei MM, Houshmand M, Panahi MS, Shariati P, Rostami M, Manshadi MD, et al. Huntington’s disease and mitochondrial DNA deletions: event or regular mechanism for mutant huntingtin protein and CAG repeats expansion?! Cell Mol Neurobiol. 2007;27(7):867–75.

    Article  CAS  PubMed  Google Scholar 

  132. Chen CM, Wu YR, Cheng ML, Liu JL, Lee YM, Lee PW, et al. Increased oxidative damage and mitochondrial abnormalities in the peripheral blood of Huntington’s disease patients. Biochem Biophys Res Commun. 2007;359(2):335–40.

    Article  CAS  PubMed  Google Scholar 

  133. Horton TM, Graham BH, Corral-Debrinski M, Shoffner JM, Kaufman AE, Beal MF, et al. Marked increase in mitochondrial DNA deletion levels in the cerebral cortex of Huntington’s disease patients. Neurology. 1995;45(10):1879–83.

    Article  CAS  PubMed  Google Scholar 

  134. Oliveira JM, Chen S, Almeida S, Riley R, Gonçalves J, Oliveira CR, et al. Mitochondrial-dependent Ca2+ handling in Huntington’s disease striatal cells: effect of histone deacetylase inhibitors. J Neurosci. 2006;26(43):11174–86.

    Article  CAS  PubMed  Google Scholar 

  135. Arning L, Haghikia A, Taherzadeh-Fard E, Saft C, Andrich J, Pula B, et al. Mitochondrial haplogroup H correlates with ATP levels and age at onset in Huntington disease. J Mol Med JMM. 2010;88(4):431–6.

    Article  CAS  Google Scholar 

  136. Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, et al. Amyotrophic lateral sclerosis. Lancet. 2011;377(9769):942–55.

    Article  CAS  PubMed  Google Scholar 

  137. Al-Chalabi A, Leigh PN. Recent advances in amyotrophic lateral sclerosis. Curr Opin Neurol. 2000;13(4):397–405.

    Article  CAS  PubMed  Google Scholar 

  138. Israelson A, Arbel N, Da Cruz S, Ilieva H, Yamanaka K, Shoshan-Barmatz V, et al. Misfolded mutant SOD1 directly inhibits VDAC1 conductance in a mouse model of inherited ALS. Neuron. 2010;67(4):575–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Warita H, Hayashi T, Murakami T, Manabe Y, Abe K. Oxidative damage to mitochondrial DNA in spinal motoneurons of transgenic ALS mice. Brain Res Mol Brain Res. 2001;89(1–2):147–52.

    Article  CAS  PubMed  Google Scholar 

  140. Dhaliwal GK, Grewal RP. Mitochondrial DNA deletion mutation levels are elevated in ALS brains. Neuroreport. 2000;11(11):2507–9.

    Article  CAS  PubMed  Google Scholar 

  141. Wiedemann FR, Manfredi G, Mawrin C, Beal MF, Schon EA. Mitochondrial DNA and respiratory chain function in spinal cords of ALS patients. J Neurochem. 2002;80(4):616–25.

    Article  CAS  PubMed  Google Scholar 

  142. Murakami T, Nagai M, Miyazaki K, Morimoto N, Ohta Y, Kurata T, et al. Early decrease of mitochondrial DNA repair enzymes in spinal motor neurons of presymptomatic transgenic mice carrying a mutant SOD1 gene. Brain Res. 2007;1150:182–9.

    Article  CAS  PubMed  Google Scholar 

  143. Marmolino D. Friedreich’s ataxia: past, present and future. Brain Res Rev. 2011;67(1–2):311–30.

    Article  CAS  PubMed  Google Scholar 

  144. Karthikeyan G, Santos JH, Graziewicz MA, Copeland WC, Isaya G, Van Houten B, et al. Reduction in frataxin causes progressive accumulation of mitochondrial damage. Hum Mol Genet. 2003;12(24):3331–42.

    Article  CAS  PubMed  Google Scholar 

  145. Wilson RB, Roof DM. Respiratory deficiency due to loss of mitochondrial DNA in yeast lacking the frataxin homologue. Nat Genet. 1997;16(4):352–7.

    Article  CAS  PubMed  Google Scholar 

  146. Houshmand M, Panahi MSS, Nafisi S, Soltanzadeh A, Alkandari FM. Identification and sizing of GAA trinucleotide repeat expansion, investigation for D-loop variations and mitochondrial deletions in Iranian patients with Friedreich’s ataxia. Mitochondrion. 2006;6(2):82–8.

    Article  CAS  PubMed  Google Scholar 

  147. Lo Giudice T, Lombardi F, Santorelli FM, Kawarai T, Orlacchio A. Hereditary spastic paraplegia: clinical-genetic characteristics and evolving molecular mechanisms. Exp Neurol. 2014;261:518–39.

    Article  CAS  PubMed  Google Scholar 

  148. Hansen JJ, Durr A, Cournu-Rebeix I, Georgopoulos C, Ang D, Nielsen MN, et al. Hereditary spastic paraplegia SPG13 is associated with a mutation in the gene encoding the mitochondrial chaperonin Hsp60. Am J Hum Genet. 2002;70(5):1328–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Almontashiri NA, Chen HH, Mailloux RJ, Tatsuta T, Teng AC, Mahmoud AB, et al. SPG7 variant escapes phosphorylation-regulated processing by AFG3L2, elevates mitochondrial ROS, and is associated with multiple clinical phenotypes. Cell Rep. 2014;7(3):834–47.

    Article  CAS  PubMed  Google Scholar 

  150. Verny C, Guegen N, Desquiret V, Chevrollier A, Prundean A, Dubas F, et al. Hereditary spastic paraplegia-like disorder due to a mitochondrial ATP6 gene point mutation. Mitochondrion. 2011;11(1):70–5.

    Article  CAS  PubMed  Google Scholar 

  151. Crosby AH, Patel H, Chioza BA, Proukakis C, Gurtz K, Patton MA, et al. Defective mitochondrial mRNA maturation is associated with spastic ataxia. Am J Hum Genet. 2010;87(5):655–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Sanchez-Ferrero E, Coto E, Corao AI, Díaz M, Gámez J, Esteban J, et al. Mitochondrial DNA polymorphisms/haplogroups in hereditary spastic paraplegia. J Neurol. 2012;259(2):246–50.

    Article  CAS  PubMed  Google Scholar 

  153. Berer K, Krishnamoorthy G. Microbial view of central nervous system autoimmunity. Febs Lett. 2014;588(22):4207–13.

    Article  CAS  PubMed  Google Scholar 

  154. Compston A, Coles A. Multiple sclerosis. Lancet. 2008;372(9648):1502–17.

    Article  CAS  PubMed  Google Scholar 

  155. Kutzelnigg A, Lucchinetti CF, Stadelmann C, Brück W, Rauschka H, Bergmann M, et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain. 2005;128:2705–12.

    Article  PubMed  Google Scholar 

  156. Ingle GT, Stevenson VL, Miller DH, Thompson AJ. Primary progressive multiple sclerosis: a 5-year clinical and MR study. Brain. 2003;126(Pt 11):2528–36.

    Article  CAS  PubMed  Google Scholar 

  157. Signoretti S, Marmarou A, Tavazzi B, Lazzarino G, Beaumont A, Vagnozzi R. N-acetylaspartate reduction as a measure of injury severity and mitochondrial dysfunction following diffuse traumatic brain injury. J Neurotrauma. 2001;18(10):977–91.

    Article  CAS  PubMed  Google Scholar 

  158. Mahad D, Campbell G, Ziabreva I, Rosenstengel C, Siegfried Schroeder HW. Mitochondrial dysfunction as a cause of axonal degeneration in the progressive stage of multiple sclerosis. J Neurol Neurosurg Psychiatry. 2008;79(3):343–4.

    Google Scholar 

  159. Dutta R, McDonough J, Yin XG, Peterson J, Chang A, Torres T, et al. Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann Neurol. 2006;59(3):478–89.

    Article  CAS  PubMed  Google Scholar 

  160. Harding AE, Sweeney MG, Miller DH, Mumford CJ, Kellar-Wood H, Menard D, et al. Occurrence of a multiple sclerosis-like illness in women who have a Leber’s hereditary optic neuropathy mitochondrial DNA mutation. Brain. 1992;115(Pt 4):979–89.

    Article  PubMed  Google Scholar 

  161. Ghezzi A, Baldini S, Zaffaroni M, Leoni G, Koudriavtseva T, Casini AR, et al. Devic’s neuromyelitis optica and mitochondrial DNA mutation: a case report. Neurol Sci. 2004;25:S380–2.

    Article  PubMed  Google Scholar 

  162. Cock H, Mandler R, Ahmed W, Schapira AH. Neuromyelitis optica (Devic’s syndrome): no association with the primary mitochondrial DNA mutations found in Leber hereditary optic neuropathy. J Neurol Neurosurg Psychiatry. 1997;62(1):85–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Kalman B, Mandler RN. Studies of mitochondrial DNA in Devic’s disease revealed no pathogenic mutations, but polymorphisms also found in association with multiple sclerosis. Ann Neurol. 2002;51(5):661–2.

    Article  PubMed  Google Scholar 

  164. Otaegui D, Saenz A, Martinez-Zabaleta M, Villoslada P, Fernández-Manchola I, Alvarez de Arcaya A, et al. Mitochondrial haplogroups in Basque multiple sclerosis patients. Mult Scler. 2004;10(5):532–5.

    Article  CAS  PubMed  Google Scholar 

  165. Ban M, Elson J, Walton A, Turnbull D, Compston A, Chinnery P, et al. Investigation of the role of mitochondrial DNA in multiple sclerosis susceptibility. PLoS One. 2008;3(8):e2891.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Blokhin A, Vyshkina T, Komoly S, Kalman B. Lack of mitochondrial DNA deletions in lesions of multiple sclerosis. Neuromolecular Med. 2008;10(3):187–94.

    Article  CAS  PubMed  Google Scholar 

  167. Campbell GR, Reeve AK, Ziabreva I, Reynolds R, Turnbull DM, Mahad DJ. No excess of mitochondrial DNA deletions within muscle in progressive multiple sclerosis. Mult Scler J. 2013;19(14):1858–66.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavin Hudson BSc, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

Hudson, G. (2016). The Ageing Brain, Mitochondria and Neurodegeneration. In: Reeve, A., Simcox, E., Duchen, M., Turnbull, D. (eds) Mitochondrial Dysfunction in Neurodegenerative Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-28637-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28637-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28635-8

  • Online ISBN: 978-3-319-28637-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics