Skip to main content

Robot-Aided Gait Training with LOPES

  • Chapter
  • First Online:
Neurorehabilitation Technology

Abstract

Robot-aided gait training in stroke survivors and spinal cord injury patients has shown modest positive effects on walking ability. It is widely acknowledged that the control and design of the robotic devices need to be further optimized to be able to provide training that fits better into modern insights in neural plasticity, motor learning, and motor recovery and in doing so improves its effectiveness. We will go more deeply into the need and scientific background for improvements on active participation and task specificity and the facilitation of different recovery mechanisms. Subsequently we will discuss recent advances that have been made in the control and design of robotic devices to improve on these aspects. Hereby, we will focus on the robotic gait training device LOPES that has been developed within our group. We will discuss how its design and control approach should contribute to improvements on all of the aforementioned aspects. The feasibility of the chosen approach is demonstrated by experimental results in healthy subjects, chronic stroke survivors, and incomplete spinal cord injury subjects. Future clinical testing has to demonstrate whether the outcome of robot-aided gait training can indeed be improved by increasing its task specificity and the active contribution of the patient and by allowing different movement strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hesse S, Uhlenbrock D. A mechanized gait trainer for restoration of gait. J Rehabil Res Dev. 2000;37(6):701–8.

    CAS  PubMed  Google Scholar 

  2. Colombo G, Joerg M, Schreier R, Dietz V. Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev. 2000;37(6):693–700.

    CAS  PubMed  Google Scholar 

  3. Banala S, Kim S, Agrawal S, Scholz J. Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Trans Neural Syst Rehabil Eng. 2009;17(1):2–8.

    Article  PubMed  Google Scholar 

  4. Aoyagi D, Ichinose W, Harkema S, Reinkensmeyer D, Bobrow J. A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury. IEEE Trans Neural Syst Rehabil Eng. 2007;15(3):387–400.

    Article  PubMed  Google Scholar 

  5. Veneman J, Kruidhof R, Hekman E, Ekkelenkamp R, Van Asseldonk E, Van der Kooij H. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2007;15(3):379–86.

    Article  PubMed  Google Scholar 

  6. Nilsson A, Vreede KS, Häglund V, Kawamoto H, Sankai Y, Borg J. Gait training early after stroke with a new exoskeleton—the hybrid assistive limb: a study of safety and feasibility. J Neuroeng Rehabil. 2014;11(1):92.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Benson I, Hart K, Tussler D, van Middendorp JJ. Lower-limb exoskeletons for individuals with chronic spinal cord injury: findings from a feasibility study. Clin Rehabil. 2015;30:73–84.

    Article  PubMed  Google Scholar 

  8. Kawamoto H, Sankai Y. Power assist system hal-3 for gait disorder person. Int Conf Comp Handicapped Persons. 2002;2398:196–203.

    Google Scholar 

  9. Husemann B, Müller F, Krewer C, Heller S, Koenig E. Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: a randomized controlled pilot study. Stroke. 2007;38(2):349–54.

    Article  PubMed  Google Scholar 

  10. Mayr A, Kofler M, Quirbach E, Matzak H, Frohlich K, Saltuari L. Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the Lokomat gait orthosis. Neurorehabil Neural Repair. 2007;21(4):307–14.

    Article  PubMed  Google Scholar 

  11. Pohl M, Werner C, Holzgraefe M, Kroczek G, Mehrholz J, Wingendorf I, et al. Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living after stroke: a single-blind, randomized multicentre trial (DEutsche GAngtrainerStudie, DEGAS). Clin Rehabil. 2007;21(1):17–27.

    Article  CAS  PubMed  Google Scholar 

  12. Hornby T, Campbell D, Kahn J, Demott T, Moore J, Roth H. Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study. Stroke. 2008;39(6):1786–92.

    Article  PubMed  Google Scholar 

  13. Hidler J, Nichols D, Pelliccio M, Brady K, Campbell DD, Kahn JH, et al. Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil Neural Repair. 2009;23(1):5–13.

    Article  PubMed  Google Scholar 

  14. Mehrholz J, Elsner B, Werner C, Kugler J, Pohl M. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev. 2013;7:CD006185.

    PubMed  Google Scholar 

  15. Swinnen E, Duerinck S, Baeyens J-P, Meeusen R, Kerckhofs E. Effectiveness of robot-assisted gait training in persons with spinal cord injury: a systematic review. J Rehabil Med. 2010;42(6):520–6.

    Article  PubMed  Google Scholar 

  16. Dobkin BH, Duncan PW. Should body weight-supported treadmill training and robotic-assistive steppers for locomotor training trot back to the starting gate? Neurorehabil Neural Repair. 2012;26(4):308–17.

    Google Scholar 

  17. van Peppen R, Kwakkel G, Wood-Dauphinee S, Hendriks H, van der Wees P, Dekker J. The impact of physical therapy on functional outcomes after stroke: what’s the evidence? Clin Rehabil. 2004;18(8):833–62.

    Article  PubMed  Google Scholar 

  18. Bayona N, Bitensky J, Salter K, Teasell R. The role of task-specific training in rehabilitation therapies. Top Stroke Rehabil. 2005;12(3):58–65.

    Article  PubMed  Google Scholar 

  19. Neckel ND, Blonien N, Nichols D, Hidler J. Abnormal joint torque patterns exhibited by chronic stroke subjects while walking with a prescribed physiological gait pattern. J Neuroeng Rehabil. 2008;5:19.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Domingo A, Ferris DP. Effects of physical guidance on short-term learning of walking on a narrow beam. Gait Posture. 2009;30(4):464–8.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kollen B, van de Port I, Lindeman E, Twisk J, Kwakkel G. Predicting improvement in gait after stroke: a longitudinal prospective study. Stroke. 2005;36(12):2676–80.

    Article  PubMed  Google Scholar 

  22. Levin M, Kleim J, Wolf S. What do motor “recovery” and “compensation” mean in patients following stroke? Neurorehabil Neural Repair. 2009;23(4):313–9.

    Article  CAS  PubMed  Google Scholar 

  23. Kim C, Eng J. Magnitude and pattern of 3D kinematic and kinetic gait profiles in persons with stroke: relationship to walking speed. Gait Posture. 2004;20(2):140–6.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bowden MG, Balasubramanian CK, Neptune RR, Kautz SA. Anterior-posterior ground reaction forces as a measure of paretic leg contribution in hemiparetic walking. Stroke. 2006;37(3):872–6.

    Article  PubMed  Google Scholar 

  25. Buurke JH, Nene AV, Kwakkel G, Erren-Wolters V, IJzerman MJ, Hermens HJ. Recovery of gait after stroke: what changes? Neurorehabil Neural Repair. 2008;22(6):676–83.

    Article  PubMed  Google Scholar 

  26. Jonsdottir J, Cattaneo D, Recalcati M, Regola A, Rabuffetti M, Ferrarin M, et al. Task-oriented biofeedback to improve gait in individuals with chronic stroke: motor learning approach. Neurorehabil Neural Repair SAGE Publ. 2010;24(5):478–85.

    Article  Google Scholar 

  27. van de Crommert H, Mulder T, Duysens J. Neural control of locomotion: sensory control of the central pattern generator and its relation to treadmill training. Gait Posture. 1998;7(3):251–63.

    Article  PubMed  Google Scholar 

  28. Gwin JT, Gramann K, Makeig S, Ferris DP. Electrocortical activity is coupled to gait cycle phase during treadmill walking. Neuroimage. 2011;54(2):1289–96.

    Article  PubMed  Google Scholar 

  29. Petersen TH, Willerslev-Olsen M, Conway BA, Nielsen JB. The motor cortex drives the muscles during walking in human subjects. J Physiol. 2012;590(Pt 10):2443–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Miyai I, Tanabe H, Sase I, Eda H, Oda I, Konishi I, et al. Cortical mapping of gait in humans: a near-infrared spectroscopic topography study. Neuroimage. 2001;14(5):1186–92.

    Article  CAS  PubMed  Google Scholar 

  31. Miyai I, Yagura H, Hatakenaka M, Oda I, Konishi I, Kubota K. Longitudinal optical imaging study for locomotor recovery after stroke. Stroke. 2003;34(12):2866–70.

    Article  PubMed  Google Scholar 

  32. Enzinger C, Dawes H, Johansen-Berg H, Wade D, Bogdanovic M, Collett J, et al. Brain activity changes associated with treadmill training after stroke. Stroke. 2009;40(7):2460–7.

    Article  PubMed  Google Scholar 

  33. Luft A, Macko R, Forrester L, Villagra F, Ivey F, Sorkin J, et al. Treadmill exercise activates subcortical neural networks and improves walking after stroke: a randomized controlled trial. Stroke. 2008;39(12):3341–50.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Thomas SL, Gorassini MA. Increases in corticospinal tract function by treadmill training after incomplete spinal cord injury. J Neurophysiol. 2005;94(4):2844–55.

    Article  PubMed  Google Scholar 

  35. Lotze M, Braun C, Birbaumer N, Anders S, Cohen L. Motor learning elicited by voluntary drive. Brain. 2003;126(Pt 4):866–72.

    Article  PubMed  Google Scholar 

  36. Perez M, Lungholt B, Nyborg K, Nielsen J. Motor skill training induces changes in the excitability of the leg cortical area in healthy humans. Exp Brain Res. 2004;159(2):197–205.

    Article  PubMed  Google Scholar 

  37. Hof A. The “extrapolated center of mass” concept suggests a simple control of balance in walking. Hum Mov Sci. 2008;27(1):112–25.

    Article  PubMed  Google Scholar 

  38. Kooij HVD, Jacobs R, Koopman B, Helm FVD. An alternative approach to synthesizing bipedal walking. Biol Cybern. 2003;88(1):46–59.

    Article  PubMed  Google Scholar 

  39. Veneman J, Menger J, Van Asseldonk E, van der Helm F, Van der Kooij H. Fixating the pelvis in the horizontal plane affects gait characteristics. Gait Posture. 2008;28(1):157–63.

    Article  PubMed  Google Scholar 

  40. Bauby C, Kuo A. Active control of lateral balance in human walking. J Biomech. 2000;33(11):1433–40.

    Article  CAS  PubMed  Google Scholar 

  41. Zajac F, Neptune R, Kautz S. Biomechanics and muscle coordination of human walking: part II: lessons from dynamical simulations and clinical implications. Gait Posture. 2003;17(1):1–17.

    Article  PubMed  Google Scholar 

  42. Ferris D, Czerniecki J, Hannaford B. An ankle-foot orthosis powered by artificial pneumatic muscles. J Appl Biomech. 2005;21(2):189–97.

    PubMed  PubMed Central  Google Scholar 

  43. Duerinck S, Swinnen E, Beyl P, Hagman F, Jonkers I, Vaes P, et al. The added value of an actuated ankle-foot orthosis to restore normal gait function in patients with spinal cord injury: a systematic review. J Rehabil Med. 2012;44(4):299–309.

    Article  PubMed  Google Scholar 

  44. Veneman J, Ekkelenkamp R, Kruidhof R, van der Helm F, Van der Kooij H. A series elastic- and bowden-cable-based actuation system for use as torque actuator in exoskeleton-type robots. Int J Robot Res. 2006;25(3):261–81.

    Article  Google Scholar 

  45. Vallery H, Ekkelenkamp R, Van der Kooij H, Buss M. Passive and accurate torque control of series elastic actuators. IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE. San Diego, United States. 2007. p. 3534–8.

    Google Scholar 

  46. Marchal-Crespo L, Reinkensmeyer DJ. Review of control strategies for robotic movement training after neurologic injury. J Neuroeng Rehabil. 2009;6:20.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Murray SA, Ha KH, Hartigan C, Goldfarb M. An assistive control approach for a lower-limb exoskeleton to facilitate recovery of walking following stroke. IEEE Trans Neural Syst Rehabil Eng. 2014;23:441–9.

    PubMed  Google Scholar 

  48. Emken J, Benitez R, Reinkensmeyer D. Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed. J Neuroengineering Rehabil. 2007;4:8.

    Article  PubMed Central  Google Scholar 

  49. Emken JL, Harkema SJ, Beres-Jones JA, Ferreira CK, Reinkensmeyer DJ. Feasibility of manual teach-and-replay and continuous impedance shaping for robotic locomotor training following spinal cord injury. IEEE Trans Biomed Eng. 2008;55(1):322–34.

    Article  PubMed  Google Scholar 

  50. Duschau-Wicke A, Zitzewitz Von J, Caprez A, Lunenburger L, Riener R. Path control: a method for patient-cooperative robot-aided gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng IEEE. 2010;18(1):38–48.

    Article  Google Scholar 

  51. Koopman B, van Asseldonk EHF, van der Kooij H. Selective control of gait subtasks in robotic gait training: foot clearance support in stroke survivors with a powered exoskeleton. J Neuroeng Rehabil. 2013;10:3.

    Article  PubMed  PubMed Central  Google Scholar 

  52. McGowan CP, Neptune RR, Clark DJ, Kautz SA. Modular control of human walking: adaptations to altered mechanical demands. J Biomech. 2010;43(3):412–9.

    Article  PubMed  Google Scholar 

  53. Neptune RR, Clark DJ, Kautz SA. Modular control of human walking: a simulation study. J Biomech. 2009;42(9):1282–7.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Allen JL, Kautz SA, Neptune RR. The influence of merged muscle excitation modules on post-stroke hemiparetic walking performance. Clin Biomech (Bristol, Avon). 2013;28(6):697–704.

    Article  Google Scholar 

  55. Coscia M, Monaco V, Martelloni C, Rossi B, Chisari C, Micera S. Muscle synergies and spinal maps are sensitive to the asymmetry induced by a unilateral stroke. J Neuroeng Rehabil. 2015;12(1):39.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hayes HB, Chvatal SA, French MA, Ting LH, Trumbower RD. Neuromuscular constraints on muscle coordination during overground walking in persons with chronic incomplete spinal cord injury. Clin Neurophysiol. 2014;125(10):2024–35.

    Article  PubMed  PubMed Central  Google Scholar 

  57. van Asseldonk EHF, Koopman B, Buurke JH, Simons CD, Van der Kooij H. Selective and adaptive robotic support of foot clearance for training stroke survivors with stiff knee gait. IEEE International Conference on Rehabilitation Robotics, Kyoto, Japan. 2009. p. 602–7.

    Google Scholar 

  58. Van Asseldonk E, Veneman J, Ekkelenkamp R, Buurke J, van der Helm F, Van der Kooij H. The effects on kinematics and muscle activity of walking in a robotic gait trainer during zero-force control. IEEE Trans Neural Syst Rehabil Eng. 2008;16:360–70.

    Article  PubMed  Google Scholar 

  59. Van der Kooij H, Koopman B, van Asseldonk E. Body weight support by virtual model control of a impedance controlled exoskeleton (LOPES) for gait training. 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vancouver, Canada. 2008. p. 1969–72.

    Google Scholar 

  60. van Hedel H, Tomatis L, Muller R. Modulation of leg muscle activity and gait kinematics by walking speed and bodyweight unloading. Gait Posture. 2006;24(1):35–45.

    Article  PubMed  Google Scholar 

  61. Threlkeld A, Cooper L, Monger B, Craven A, Haupt H. Temporospatial and kinematic gait alterations during treadmill walking with body weight suspension. Gait Posture. 2003;17(3):235–45.

    Article  PubMed  Google Scholar 

  62. Frey M, Colombo G, Vaglio M, Bucher R, Jorg M, Riener R. A novel mechatronic body weight support system. IEEE Trans Neural Syst Rehabil Eng. 2006;14(3):311–21.

    Article  PubMed  Google Scholar 

  63. Fleerkotte BM, Koopman B, Buurke JH, van Asseldonk EHF, van der Kooij H, Rietman JS. The effect of impedance-controlled robotic gait training on walking ability and quality in individuals with chronic incomplete spinal cord injury: an explorative study. J Neuroengineering Rehabil. 2014;11(1):26.

    Article  Google Scholar 

  64. Maynard Jr FM, Bracken MB, Creasey G, Ditunno Jr JF, Donovan WH, Ducker TB, et al. International standards for neurological and functional classification of spinal cord injury. Spinal Cord. 1997;35(5):266–74.

    Article  PubMed  Google Scholar 

  65. van Nunen MPM. Recovery of walking ability using a robotic device. PhD Thesis. Amsterdam: Free University, Amsterdam; 2013.

    Google Scholar 

  66. Wirz M, Zemon DH, Rupp R, Scheel A, Colombo G, Dietz V, et al. Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehabil. 2005;86(4):672–80.

    Article  PubMed  Google Scholar 

  67. Field-Fote EC, Roach KE. Influence of a locomotor training approach on walking speed and distance in people with chronic spinal cord injury: a randomized clinical trial. Phys Ther. 2011;91(1):48–60.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Meuleman JH, van Asseldonk EHF, Van der Kooij H. The effect of directional inertias added to pelvis and ankle on gait. J Neuroeng Rehabil. 2013;10(1):40.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin H. F. van Asseldonk PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

van Asseldonk, E.H.F., van der Kooij, H. (2016). Robot-Aided Gait Training with LOPES. In: Reinkensmeyer, D., Dietz, V. (eds) Neurorehabilitation Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-28603-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28603-7_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28601-3

  • Online ISBN: 978-3-319-28603-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics