Skip to main content

Three-Dimensional Multi-degree-of-Freedom Arm Therapy Robot (ARMin)

  • Chapter
  • First Online:
Neurorehabilitation Technology

Abstract

Rehabilitation robots have become an important tool in stroke rehabilitation. Compared to manual arm therapy, robot-supported arm therapy can be more intensive, with more frequent, more numerous, and longer repetitions. Therefore, robots have the potential to improve the rehabilitation process in stroke patients. In this chapter, the three-dimensional, multi-degree-of-freedom ARMin arm robot is presented. The device has an exoskeleton structure that enables the training of activities of daily living. Patient-responsive control strategies assist the patient only as much as needed and stimulate patient activity. This chapter covers the mechanical setup, the therapy modes, and the clinical evaluation of the ARMin robot. It concludes with an outlook on technical developments and about the technology transfer to industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brainin M, Bornstein N, Boysen G, Demarin V. Acute neurological stroke care in Europe: results of the European Stroke Care Inventory. Eur J Neurol. 2000;7:5–10.

    Article  CAS  PubMed  Google Scholar 

  2. Thorvaldsen P, Asplund K, Kuulasmaa K, Rajakangas AM, Schroll M. Stroke incidence, case fatality, and mortality in the WHO MONICA project. World Health Organization Monitoring Trends and Determinants in Cardiovascular Disease. Stroke. 1995;26(3):361–7.

    Article  CAS  PubMed  Google Scholar 

  3. Rosamond W, Flegal K, Friday G, et al. Heart disease and stroke statistics update. A report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2007;115:69–171.

    Article  Google Scholar 

  4. Maeurer HC, Diener HC. Der Schlaganfall. Stuttgart: Georg Thieme Verlag; 1996.

    Google Scholar 

  5. Rossini PM, Calautti C, Pauri F, Baron JC. Post-stroke plastic reorganisation in the adult brain. Lancet Neurol. 2003;2:493–502.

    Article  PubMed  Google Scholar 

  6. Nakayama H, Jrgensen HS, Raaschou HO, Olsen TS. Recovery of upper extremity function in stroke patients: the Copenhagen Stroke Study. Arch Phys Med Rehabil. 1994;75:394–8.

    Article  CAS  PubMed  Google Scholar 

  7. Barreca S, Wolf SL, Fasoli S, Bohannon R. Treatment interventions for the paretic upper limb of stroke survivors: a critical review. Neurorehabil Neural Repair. 2003;17(4):220–6.

    Article  PubMed  Google Scholar 

  8. Platz T. Evidence-based arm rehabilitation—a systematic review of the literature. Nervenarzt. 2003;74(10):841–9.

    Article  CAS  PubMed  Google Scholar 

  9. Dobkin BH. Strategies for stroke rehabilitation. Lancet Neurol. 2004;3(9):528–36.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ottenbacher KJ, Jannell S. The results of clinical trials in stroke rehabilitation research. Arch Neurol. 1993;50:37–44.

    Article  CAS  PubMed  Google Scholar 

  11. Kwakkel G, Wagenaar RC, Koelman TW, Lankhorst GJ, Koetsier JC. Effects of intensity of rehabilitation after stroke. A research synthesis. Stroke. 1997;28(8):1550–6.

    Article  CAS  PubMed  Google Scholar 

  12. Nelles G. Cortical reorganization-effects of intensive therapy. Arch Phys Med Rehabil. 2004;22:239–44.

    Google Scholar 

  13. Sunderland A, Tinson DJ, Bradley EL, Fletcher D, Langton Hewer R, Wade DT. Enhanced physical therapy improves recovery of arm function after stroke. A randomised controlled trial. J Neurol Neurosurg Psychiatry. 1992;55(7):530–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kwakkel G, Kollen BJ, Wagenaar RC. Long term effects of intensity of upper and lower limb training after stroke: a randomised trial. J Neurol Neurosurg Psychiatry. 2002;72:473–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Butefisch C, Hummelsheim H, Denzler P, Mauritz KH. Repetitive training of isolated movements improves the outcome of motor rehabilitation of the centrally paretic hand. J Neurol Sci. 1995;130:59–68.

    Article  CAS  PubMed  Google Scholar 

  16. Prange GB, Jannink MJA, Groothuis-Oudshoorn CGM, Hermens HJ, Ijzerman MJ. Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J Rehabil Res Dev. 2006;43:171–84.

    Article  PubMed  Google Scholar 

  17. Riener R, Nef T, Colombo G. Robot-aided neurorehabilitation for the upper extremities. Med Biol Eng Comput. 2005;43:2–10.

    Article  CAS  PubMed  Google Scholar 

  18. Kwakkel G, Kollen BJ, Krebs HI. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair. 2008;22(2):111–21.

    Article  PubMed  Google Scholar 

  19. Krebs HI, Ferraro M, Buerger SP, et al. Rehabilitation robotics: pilot trial of a spatial extension for MIT-Manus. J Neuroeng Rehabil. 2004;1:5–9.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lum PS, Burgar CG, Shor PC, Majmundar M, Van der Loos M. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil. 2002;83(7):952–9.

    Article  PubMed  Google Scholar 

  21. Hesse S, Werner C, Pohl M, Mehrholz J, Puzich U, Krebs HI. Mechanical arm trainer for the treatment of the severely affected arm after a stroke: a single-blinded randomized trial in two centers. Am J Phys Med Rehabil. 2008;87(10):779–88.

    Article  CAS  PubMed  Google Scholar 

  22. Coote S, Murphy B, Harwin W, Stokes E. The effect of the GENTLE/s robot-mediated therapy system on arm function after stroke. Clin Rehabil. 2008;22(5):395–405.

    Article  PubMed  Google Scholar 

  23. Dewald J, Ellis MD, Holubar BG, Sukal T, Acosta AM. The robot application in the rehabilitation of stroke patients. Neurol Rehabil. 2004;4:S7.

    Google Scholar 

  24. Nef T, Guidali M, Riener R. ARMin III—arm therapy exoskeleton with an ergonomic shoulder actuation. Appl Bionics Biomech. 2009;6(2):127–42.

    Article  Google Scholar 

  25. Stienen AHA, Hekman EEG, Van der Helm FCT, et al. Dampace: dynamic force-coordination trainer for the upper extremities. Proc IEEE. 2007;10:13–5.

    Google Scholar 

  26. Sanchez RJ, Liu J, Rao S, et al. Automating arm movement training following severe stroke: functional exercise with quantitative feedback in a gravity reduced environment. IEEE Trans Neural Syst Rehabil Eng. 2006;14:378–89.

    Article  PubMed  Google Scholar 

  27. Carignan C, Liszka M. Design of an arm exoskeleton with scapula motion for shoulder rehabilitation. Paper presented at: Proceedings of the 12th international conference on advanced robotics, Seattle; 18–20 Jul 2005.

    Google Scholar 

  28. Frisoli A, Borelli L, Montagner A, et al. Arm rehabilitation with a robotic exoskeleleton in virtual reality. In: 2007 IEEE 10th international conference on rehabilitation robotics, vols 1 and 2, Noordwijk; 2007. p. 631–42.

    Google Scholar 

  29. Rosen J, Perry JC, Manning N, Burns S, Hannaford B. The human arm kinematics and dynamics during daily activities—toward a 7 DOF upper limb powered exoskeleton. In: 2005 12th international conference on advanced robotics, Seattle; 2005, p. 532–9.

    Google Scholar 

  30. Zhang LQ, Park FS, Ren YP. Developing an intelligent robotic arm for stroke rehabilitation. In: 2007 IEEE 10th international conference on rehabilitation robotics, vols 1 and 2, Noordwijk; 2007, p. 984–93.

    Google Scholar 

  31. Nef T, Mihelj M, Riener R. ARMin: a robot for patient-cooperative arm therapy. Med Biol Eng Comput. 2007;45:887–900.

    Article  PubMed  Google Scholar 

  32. Bayona NA, Bitensky J, Salter K, Teasell R. The role of task-specific training in rehabilitation therapies. Top Stroke Rehabil. 2005;12:58–65.

    Article  PubMed  Google Scholar 

  33. Wolf SL, Lecraw DE, Barton LA, Jann BB. Forced use of hemiplegic upper extremity to reverse the effect of learned nonuse among chronic stroke and head-injured patients. Exp Neurol. 1989;104:125–32.

    Article  CAS  PubMed  Google Scholar 

  34. Taub E, Uswatte G, Pidikiti R. Constraint-induced movement therapy: a new family of techniques with broad application to physical rehabilitation—a clinical review. J Rehabil Res Dev. 1999;36:237–51.

    CAS  PubMed  Google Scholar 

  35. Miltner WHR, Bauder H, Sommer M, Dettmers C, Taub E. Effects of constraint-induced movement therapy on patients with chronic motor deficits after stroke. A replication. Stroke. 1999;30:586–92.

    Article  CAS  PubMed  Google Scholar 

  36. Dromerick AW, Edwards DF, Hahn M. Does the application of constraint-induced movement therapy during acute rehabilitation reduce arm impairment after ischemic stroke? Stroke. 2000;31:2984–8.

    Article  CAS  PubMed  Google Scholar 

  37. Lambercy O, Dovat L, Gassert R, Burdet E, Teo CL, Milner T. A haptic knob for rehabilitation of hand function. IEEE Trans Neural Syst Rehabil Eng. 2007;15(3):356–66.

    Article  PubMed  Google Scholar 

  38. Hesse S, Schulte-Tigges G, Konrad M, Bardeleben A, Werner C. Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Arch Phys Med Rehabil. 2003;84:915–20.

    Article  PubMed  Google Scholar 

  39. Krebs HI, Volpe BT, Williams D, et al. Robot-aided neurorehabilitation: a robot for wrist rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2007;15(3):327–35.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hesse S, Werner C, Pohl M, Rueckriem S, Mehrholz J, Lingnau ML. Computerized arm training improves the motor control of the severely affected arm after stroke: a single-blinded randomized trial in two centers. Stroke. 2005;36(9):1960–6.

    Article  CAS  PubMed  Google Scholar 

  41. Muellbacher W, Richards C, Ziemann U, et al. Improving hand function in chronic stroke. Arch Neurol. 2002;59(8):1278–82. 42. Krebs HI, Hogan N, Aisen ML, Volpe BT. Robot-aided neurorehabilitation. IEEE Trans Rehabil Eng. 1998;6:75–87.

    Google Scholar 

  42. Ellis MD, Sukal-Moulton TM, Dewald JP. Impairment-based 3-D robotic intervention improves upper extremity work area in chronic stroke: targeting abnormal joint torque coupling with progressive shoulder abduction loading. IEEE Trans Robot. 2009;25(3):549–55.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bolliger M, Banz R, Dietz V, Lunenburger L. Standardized voluntary force measurement in a lower extremity rehabilitation robot. J Neuroeng Rehabil. 2008;5:23.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Krebs HI, Mernoff S, Fasoli SE, Hughes R, Stein J, Hogan N. A comparison of functional and impairment-based robotic training in severe to moderate chronic stroke: a pilot study. Neurorehabil. 2008;23(1)81–7. PMID: 18356591

    Google Scholar 

  45. Lunenburger L, Colombo G, Riener R. Biofeedback for robotic gait rehabilitation. J Neuroeng Rehabil. 2007;4:1.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Housman SJ, Scott KM, Reinkensmeyer DJ. A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis. Neurorehabil Neural Repair. 2009;23(5):505–14.

    Article  PubMed  Google Scholar 

  47. Nef T, Mihelj M, Colombo G, Riener R. ARMin robot for rehabilitation of the upper extremities. In: IEEE international conference on robotics and automation, Orlando; 2006, p. 3152–7.

    Google Scholar 

  48. Mihelj M, Nef T, Riener R. ARMin II—7 DoF rehabilitation robot: mechanics and kinematics. In: Proceedings of the 2007 IEEE international conference on robotics and automation, vols 1–10, Rome; 2007, pp. 4120–5.

    Google Scholar 

  49. Nef T, Lum P. Improving backdrivability in geared rehabilitation robots. Med Biol Eng Comput. 2009;47(4):441–7.

    Article  PubMed  Google Scholar 

  50. Staubli P, Nef T, Klamroth-Marganska V, Riener R. Effects of intensive arm training with the rehabilitation robot ARMin II in chronic stroke patients: four single-cases. J Neuroeng Rehabil. 2009;6:46.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Nef T, Quinter G, Muller R, Riener R. Effects of arm training with the robotic device ARMin I in chronic stroke: three single cases. Neurodegener Dis. 2009;6(5–6):240–51.

    Article  PubMed  Google Scholar 

  52. Nef T, Mihelj M, Kiefer G, Perndl C, Mueller R, Riener R. ARMin—exoskeleton for arm therapy in stroke patients. In: 2007 IEEE 10th international conference on rehabilitation robotics, vols 1 and 2, Noordwijk; 2007, p. 68–74.

    Google Scholar 

  53. Guidali M, Duschau-Wicke A, Broggi S, Klamroth-Marganska V, Nef T, Riener R. A robotic system to train activities of daily living in a virtual environment. Med Biol Eng Comput. 2011;49(10):1213–23. doi:10.1007/s11517-011-0809-0.

    Google Scholar 

  54. Mihelj M, Nef T, Riener R. A novel paradigm for patient-cooperative control of upper-limb rehabilitation robots. Adv Robot. 2007;21(8):843–67.

    Article  Google Scholar 

  55. Duschau-Wicke A, von Zitzewitz J, Caprez A, Lunenburger L, Riener R. Path control: a method for patient-cooperative robot-aided gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2010;18(1):38–48.

    Article  PubMed  Google Scholar 

  56. Dewald JP, Beer RF. Abnormal joint torque patterns in the paretic upper limb of subjects with hemiparesis. Muscle Nerve. 2001;24:273–83.

    Article  CAS  PubMed  Google Scholar 

  57. Schmartz AC, Meyer-Heim AD, Muller R, Bolliger M. Measurement of muscle stiffness using robotic assisted gait orthosis in children with cerebral palsy: a proof of concept. Disabil Rehabil Assist Technol. 2011;6(1):29–37.

    Article  PubMed  Google Scholar 

  58. Klamroth-Marganska V, Blanco J, Campen K, et al. Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial. Lancet Neurol. 2014;13(2):159–66.

    Article  PubMed  Google Scholar 

  59. Byl NN, Abrams GM, Pitsch E, Fedulow I, Kim H, Simkins M, Nagarajan S, Rosen J. Chronic stroke survivors achieve comparable outcomes following virtual task specific repetitive training guided by a wearable robotic orthosis (UL-EXO7) and actual task specific repetitive training guided by a physical therapist. J Hand Ther. 2013;26:343–52.

    Article  PubMed  Google Scholar 

  60. Reinkensmeyer DJ, Wolbrecht ET, Chan V, Chou C, Cramer SC, Bobrow JE. Comparison of 3D, assist-as-needed robotic arm/hand movement training provided with Pneu-WREX to conventional table top therapy following chronic stroke. Am J Phys Med Rehabil. 2012;91:S232.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Milot M-H, Spencer SJ, Chan V, Allington JP, Klein J, Chou C, Bobrow JE, Cramer SC, Reinkensmeyer DJ, et al. A crossover pilot study evaluating the functional outcomes of two different types of robotic movement training in chronic stroke survivors using the arm exoskeleton BONES. J Neuroeng Rehabil. 2013;10:112.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sakzewski L, Gordon A, Eliasson A-C. The state of the evidence for intensive upper limb therapy approaches for children with unilateral cerebral palsy. J Child Neurol. 2014;29(8):1077–90.

    Article  PubMed  Google Scholar 

  63. Damiano D. Activity, activity, activity: rethinking our physical therapy approach to cerebral palsy. Phys Ther. 2006;86(11):1534–40.

    Article  PubMed  Google Scholar 

  64. Fasoli S, Fragala-Pinkham M, Hughes R, Hogan N, Krebs H, Stein J. Upper limb robotic therapy for children with hemiplegia. Am J Phys Med Rehabil. 2008;87(11):929.

    Article  PubMed  Google Scholar 

  65. Fluet G, Qiu Q, Kelly D, Parikh HD, Ramirez D, Saleh S, Adamovich S. Interfacing a haptic robotic system with complex virtual environments to treat impaired upper extremity motor function in children with cerebral palsy. Dev Neurorehabil. 2010;13(5):335–45.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Gilliaux M, Renders A, Dispa D, Holvoet D, Sapin J, Dehez B, Detrembleur C, Lejeune TM, Stoquart G. Upper limb robot-assisted therapy in cerebral palsy a single-blind randomized controlled trial. Neurorehabil Neural Repair. 2014;29(2):183–92.

    Article  PubMed  Google Scholar 

  67. http://www.hocoma.com/products/armeo/armeospring-pediatric/.

  68. Keller H, Riener R. Design of the pediatric arm rehabilitation robot ChARMin. In Biomedical robotics and biomechatronics (BioRob), 2014 IEEE international conference on. IEEE; 2014. p. 530–5.

    Google Scholar 

  69. Keller U, Schölch S, Albisser U, Rudhe C, Curt A, Riener R, Klamroth-Marganska M. Robot-assisted arm assessments in spinal cord injured patients: a consideration of concept study. PLoS One. 2015;10(5):e0126948.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Riener R, Lunenburger L, Jezernik S, Anderschitz M, Colombo G, Dietz V. Patient-cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Trans Neural Syst Rehabil Eng. 2005;13(3):380–94.

    Article  PubMed  Google Scholar 

  71. Marchal-Crespo L, Reinkensmeyer DJ. Review of control strategies for robotic movement training after neurologic injury. J Neuroeng Rehabil. 2009;6:20.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Prange GB, Jannink MJ, Stienen AH, van der Kooij H, Ijzerman MJ, Hermens HJ. Influence of gravity compensation on muscle activation patterns during different temporal phases of arm movements of stroke patients. Neurorehabil Neural Repair. 2009;23(5):478–85.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We thank all people who contributed to the development and clinical application of ARMin, including Prof. Dr. med. V. Dietz, M. Guidali, A. Brunschweiler, A. Rotta, and A. Kollmar. We thank E. Young for her help with preparing the manuscript. Furthermore, we want to thank all participating patients and our clinical partners contributing to the multicenter study. The research was and is still funded in part by NCCR Neuro, Swiss National Science Foundation, Hans-Eggenberger Foundation, Bangerter-Rhyner Foundation, and ETH Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Nef PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

Nef, T., Klamroth-Marganska, V., Keller, U., Riener, R. (2016). Three-Dimensional Multi-degree-of-Freedom Arm Therapy Robot (ARMin). In: Reinkensmeyer, D., Dietz, V. (eds) Neurorehabilitation Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-28603-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28603-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28601-3

  • Online ISBN: 978-3-319-28603-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics