Skip to main content

Cancer-Induced Pain

  • Chapter
  • First Online:
Oncodynamics: Effects of Cancer Cells on the Body

Abstract

Most commonly, but not exclusively, cancer pain is a result of late-stage metastatic cancers and primary and metastatic cancers that grow in the bone. Cancer pain, like the disease itself, is widely diverse in its quality and extent, and can result from many different causative factors. Many factors have been implicated in the causation and maintenance of cancer pain. Neuropathic pain results from damaged peripheral or central neuronal tissue and from chronically altered neuronal signalling resulting from central and peripheral sensitization. Neuronal tissue can be damaged by direct invasion by tumour cells, as is the case of tumours of the central nervous system (CNS) or by invasion of peripheral neurons in peripheral host tissues. Cancer cells and associated cells also secrete a large number of chemical factors, some of which can directly damage or simulate neurons. Direct physical interaction between the tumour mass and the altered host tissues with neuronal tissue can also cause neuropathic damage through nerve disruption and destruction. Cancer cells and associated cells including stromal and immune cells also secrete a host of chemical signalling molecules that can directly and indirectly stimulate nociceptors. Thermal stimuli of sensory neurons can become pathological following peripheral and central sensitization, which decreases the threshold temperature at which thermally sensitive neurons will respond. Pain is also often a side effect of many treatments of cancer, although the mechanisms of these treatment-induced conditions are beyond the scope of this review. Treatment of cancer pain itself largely relies on analgesics and therapies directed against the cancers themselves, although specific treatments for cancer pain are more recently becoming available. It is often the case, however, that cancer pain conditions become intractable, or are poorly controlled. Breakthrough pain which is prevalent in cancer pain is defined by its relationship to treatment where it is an episodic painful event that occurs during a routine of normally effective pain control. Cancer pain is a serious and prevalent oncodynamic effect that arises from a highly variable array of stimuli. The study of cancer pain as a distinct phenomenon is still in its infancy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sabino MAC, Mantyh PW. Pathophysiology of bone cancer pain. J Support Oncol. 2005;3(1):15–24.

    CAS  PubMed  Google Scholar 

  2. Mercadante S. Malignant bone pain: pathophysiology and treatment. Pain. 1997;69(1–2):1–18.

    Article  CAS  PubMed  Google Scholar 

  3. Valeberg BT, Rustøen T, Bjordal K, Hanestad BR, Paul S, Miaskowski C. Self-reported prevalence, etiology, and characteristics of pain in oncology outpatients. Eur J Pain. 2008;12(5):582–90.

    Article  PubMed  Google Scholar 

  4. Cleeland CS. The impact of pain on the patient with cancer. Cancer. 1984;54(11 Suppl):2635–41.

    Article  CAS  PubMed  Google Scholar 

  5. Greco MT, Roberto A, Corli O, Deandrea S, Bandieri E, Cavuto S, et al. Quality of cancer pain management: an update of a systematic review of undertreatment of patients with cancer. J Clin Oncol. 2014;32(36):4149–54.

    Article  PubMed  Google Scholar 

  6. Loeser JD, Treede R-D. The Kyoto protocol of IASP basic pain terminology. Pain. 2008;137(3):473–7.

    Article  PubMed  Google Scholar 

  7. Todd AJ. Anatomy of primary afferents and projection neurones in the rat spinal dorsal horn with particular emphasis on substance P and the neurokinin 1 receptor. Exp Physiol. 2002;87(2):245–9.

    Article  CAS  PubMed  Google Scholar 

  8. Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell. 2009;139(2):267–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Borsook D. Neurological diseases and pain. Brain. 2012;135(Pt 2):320–44.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Voscopoulos C, Lema M. When does acute pain become chronic? Br J Anaesth. 2010;105(Supplement 1):i69–85.

    Article  PubMed  Google Scholar 

  11. Gold MS, Gebhart GF. Nociceptor sensitization in pain pathogenesis. Nat Med. 2010;16(11):1248–57.

    Article  CAS  PubMed  Google Scholar 

  12. Sorge RE, Mapplebeck JCS, Rosen S, Beggs S, Taves S, Alexander JK, et al. Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nat Neurosci. 2015;18(8):1081–3.

    Article  CAS  PubMed  Google Scholar 

  13. Portenoy RK. Treatment of cancer pain. Lancet (London, England). 2011;377(9784):2236–47.

    Google Scholar 

  14. Mantyh PW, Clohisy DR, Koltzenburg M, Hunt SP. Molecular mechanisms of cancer pain. Nat Rev Cancer. 2002;2(3):201–9.

    Article  CAS  PubMed  Google Scholar 

  15. Cain DM, Wacnik PW, Turner M, Wendelschafer-Crabb G, Kennedy WR, Wilcox GL, et al. Functional interactions between tumor and peripheral nerve: changes in excitability and morphology of primary afferent fibers in a murine model of cancer pain. J Neurosci. 2001;21(23):9367–76.

    CAS  PubMed  Google Scholar 

  16. Wacnik PW, Eikmeier LJ, Ruggles TR, Ramnaraine ML, Walcheck BK, Beitz AJ, et al. Functional interactions between tumor and peripheral nerve: morphology, algogen identification, and behavioral characterization of a new murine model of cancer pain. J Neurosci. 2001;21(23):9355–66.

    CAS  PubMed  Google Scholar 

  17. Schmidt BL, Pickering V, Liu S, Quang P, Dolan J, Connelly ST, et al. Peripheral endothelin A receptor antagonism attenuates carcinoma-induced pain. Eur J Pain. 2007;11(4):406–14.

    Article  CAS  PubMed  Google Scholar 

  18. Yuyama H, Koakutsu A, Fujiyasu N, Fujimori A, Sato S, Shibasaki K, et al. Inhibitory effects of a selective endothelin-A receptor antagonist YM598 on endothelin-1-induced potentiation of nociception in formalin-induced and prostate cancer-induced pain models in mice. J Cardiovasc Pharmacol. 2004;44(Suppl 1):S479–82.

    Article  CAS  PubMed  Google Scholar 

  19. Caraceni A, Portenoy RK. An international survey of cancer pain characteristics and syndromes. IASP task force on cancer pain. International association for the study of pain. Pain. 1999;82(3):263–74.

    Article  CAS  PubMed  Google Scholar 

  20. Mantyh PW, Koltzenburg M, Mendell LM, Tive L, Shelton DL. Antagonism of nerve growth factor-TrkA signaling and the relief of pain. Anesthesiology. 2011;115(1):189–204.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Mantyh WG, Jimenez-Andrade JM, Stake JI, Bloom AP, Kaczmarska MJ, Taylor RN, et al. Blockade of nerve sprouting and neuroma formation markedly attenuates the development of late stage cancer pain. Neuroscience. 2010;171(2):588–98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Bloom AP, Jimenez-Andrade JM, Taylor RN, Castañeda-Corral G, Kaczmarska MJ, Freeman KT, et al. Breast cancer-induced bone remodeling, skeletal pain, and sprouting of sensory nerve fibers. J Pain. 2011;12(6):698–711.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Jimenez-Andrade JM, Ghilardi JR, Castañeda-Corral G, Kuskowski MA, Mantyh PW. Preventive or late administration of anti-NGF therapy attenuates tumor-induced nerve sprouting, neuroma formation, and cancer pain. Pain. 2011;152(11):2564–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Merighi A, Salio C, Ghirri A, Lossi L, Ferrini F, Betelli C, et al. BDNF as a pain modulator. Prog Neurobiol. 2008;85(3):297–317.

    Article  CAS  PubMed  Google Scholar 

  25. Wang L-N, Yang J-P, Zhan Y, Ji F-H, Wang X-Y, Zuo J-L, et al. Minocycline-induced reduction of brain-derived neurotrophic factor expression in relation to cancer-induced bone pain in rats. J Neurosci Res. 2012;90(3):672–81.

    Article  CAS  PubMed  Google Scholar 

  26. Nelson JB, Hedican SP, George DJ, Reddi AH, Piantadosi S, Eisenberger MA, et al. Identification of endothelin-1 in the pathophysiology of metastatic adenocarcinoma of the prostate. Nat Med. 1995;1(9):944–9.

    Article  CAS  PubMed  Google Scholar 

  27. Nelson JB, Love W, Chin JL, Saad F, Schulman CC, Sleep DJ, et al. Phase 3, randomized, controlled trial of atrasentan in patients with nonmetastatic, hormone-refractory prostate cancer. Cancer. 2008;113(9):2478–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Quang PN, Schmidt BL. Peripheral endothelin B receptor agonist-induced antinociception involves endogenous opioids in mice. Pain. 2010;149(2):254–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Yoneda T, Hata K, Nakanishi M, Nagae M, Nagayama T, Wakabayashi H, et al. Involvement of acidic microenvironment in the pathophysiology of cancer-associated bone pain. Bone. 2011;48(1):100–5.

    Article  CAS  PubMed  Google Scholar 

  30. Pan H-L, Zhang Y-Q, Zhao Z-Q. Involvement of lysophosphatidic acid in bone cancer pain by potentiation of TRPV1 via PKCε pathway in dorsal root ganglion neurons. Mol Pain. 2010;6:85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Qiu F, Wei X, Zhang S, Yuan W, Mi W. Increased expression of acid-sensing ion channel 3 within dorsal root ganglia in a rat model of bone cancer pain. NeuroReport. 2014;25(12):887–93.

    Article  CAS  PubMed  Google Scholar 

  32. Ghilardi JR, Röhrich H, Lindsay TH, Sevcik MA, Schwei MJ, Kubota K, et al. Selective blockade of the capsaicin receptor TRPV1 attenuates bone cancer pain. J Neurosci. 2005;25(12):3126–31.

    Article  CAS  PubMed  Google Scholar 

  33. Chung WJ, Lyons SA, Nelson GM, Hamza H, Gladson CL, Gillespie GY, et al. Inhibition of cystine uptake disrupts the growth of primary brain tumors. J Neurosci. 2005;25(31):7101–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Sharma MK, Seidlitz EP, Singh G. Cancer cells release glutamate via the cystine/glutamate antiporter. Biochem Biophys Res Commun. 2010;391(1):91–5.

    Article  CAS  PubMed  Google Scholar 

  35. Cairns BE, Gambarota G, Svensson P, Arendt-Nielsen L, Berde CB. Glutamate-induced sensitization of rat masseter muscle fibers. Neuroscience. 2002;109(2):389–99.

    Article  CAS  PubMed  Google Scholar 

  36. Buckingham SC, Campbell SL, Haas BR, Montana V, Robel S, Ogunrinu T, et al. Glutamate release by primary brain tumors induces epileptic activity. Nat Med. 2011;17(10):1269–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Robert SM, Buckingham SC, Campbell SL, Robel S, Holt KT, Ogunrinu-Babarinde T, et al. SLC7A11 expression is associated with seizures and predicts poor survival in patients with malignant glioma. Sci Transl Med. 2015;7(289):289ra86.

    Google Scholar 

  38. Ungard RG, Seidlitz EP, Singh G. Inhibition of breast cancer-cell glutamate release with sulfasalazine limits cancer-induced bone pain. Pain. 2014;155(1):28–36.

    Article  CAS  PubMed  Google Scholar 

  39. Jimenez-Andrade JM, Mantyh WG, Bloom AP, Ferng AS, Geffre CP, Mantyh PW. Bone cancer pain. Ann N Y Acad Sci. 2010;1198:173–81.

    Article  PubMed  Google Scholar 

  40. Slosky LM, Largent-Milnes TM, Vanderah TW. Use of animal models in understanding cancer-induced bone pain. Cancer Growth Metastasis. 2015;8(Suppl 1):47–62.

    PubMed Central  PubMed  Google Scholar 

  41. Peters CM, Ghilardi JR, Keyser CP, Kubota K, Lindsay TH, Luger NM, et al. Tumor-induced injury of primary afferent sensory nerve fibers in bone cancer pain. Exp Neurol. 2005;193(1):85–100.

    Article  PubMed  Google Scholar 

  42. Khasabov SG, Hamamoto DT, Harding-Rose C, Simone DA. Tumor-evoked hyperalgesia and sensitization of nociceptive dorsal horn neurons in a murine model of cancer pain. Brain Res. 2007;14(1180):7–19.

    Article  Google Scholar 

  43. Urch CE, Donovan-Rodriguez T, Dickenson AH. Alterations in dorsal horn neurones in a rat model of cancer-induced bone pain. Pain. 2003;106(3):347–56.

    Article  CAS  PubMed  Google Scholar 

  44. Yanagisawa Y, Furue H, Kawamata T, Uta D, Yamamoto J, Furuse S, et al. Bone cancer induces a unique central sensitization through synaptic changes in a wide area of the spinal cord. Mol Pain. 2010;6:38.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Donovan-Rodriguez T, Dickenson AH, Urch CE. Superficial dorsal horn neuronal responses and the emergence of behavioural hyperalgesia in a rat model of cancer-induced bone pain. Neurosci Lett. 2004;360(1–2):29–32.

    Article  CAS  PubMed  Google Scholar 

  46. Zhao J, Pan H-L, Li T-T, Zhang Y-Q, Wei J-Y, Zhao Z-Q. The sensitization of peripheral C-fibers to lysophosphatidic acid in bone cancer pain. Life Sci. 2010;87(3–4):120–5.

    Article  CAS  PubMed  Google Scholar 

  47. Zheng Q, Fang D, Cai J, Wan Y, Han J-S, Xing G-G. Enhanced excitability of small dorsal root ganglion neurons in rats with bone cancer pain. Mol Pain. 2012;8:24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Hamamoto DT, Khasabov SG, Cain DM, Simone DA. Tumor-evoked sensitization of C nociceptors: a role for endothelin. J Neurophysiol. 2008;100(4):2300–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Schwei MJ, Honore P, Rogers SD, Salak-Johnson JL, Finke MP, Ramnaraine ML, et al. Neurochemical and cellular reorganization of the spinal cord in a murine model of bone cancer pain. J Neurosci. 1999;19(24):10886–97.

    CAS  PubMed  Google Scholar 

  50. Coleman RE. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res. 2006;12(20 Pt 2):6243s–9s.

    Article  PubMed  Google Scholar 

  51. Mach DB, Rogers SD, Sabino MC, Luger NM, Schwei MJ, Pomonis JD, et al. Origins of skeletal pain: sensory and sympathetic innervation of the mouse femur. Neuroscience. 2002;113(1):155–66.

    Article  CAS  PubMed  Google Scholar 

  52. Jimenez-Andrade JM, Mantyh WG, Bloom AP, Xu H, Ferng AS, Dussor G, et al. A phenotypically restricted set of primary afferent nerve fibers innervate the bone versus skin: therapeutic opportunity for treating skeletal pain. Bone. 2010;46(2):306–13.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Honore P, Rogers SD, Schwei MJ, Salak-Johnson JL, Luger NM, Sabino MC, et al. Murine models of inflammatory, neuropathic and cancer pain each generates a unique set of neurochemical changes in the spinal cord and sensory neurons. Neuroscience. 2000;98(3):585–98.

    Article  CAS  PubMed  Google Scholar 

  54. Halvorson KG, Sevcik MA, Ghilardi JR, Rosol TJ, Mantyh PW. Similarities and differences in tumor growth, skeletal remodeling and pain in an osteolytic and osteoblastic model of bone cancer. Clin J Pain. 2006;22(7):587–600.

    Article  PubMed  Google Scholar 

  55. Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer. 2002;2(8):584–93.

    Article  CAS  PubMed  Google Scholar 

  56. Yin JJ, Mohammad KS, Käkönen SM, Harris S, Wu-Wong JR, Wessale JL, et al. A causal role for endothelin-1 in the pathogenesis of osteoblastic bone metastases. Proc Natl Acad Sci USA. 2003;100(19):10954–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Roudier MP, Vesselle H, True LD, Higano CS, Ott SM, King SH, et al. Bone histology at autopsy and matched bone scintigraphy findings in patients with hormone refractory prostate cancer: the effect of bisphosphonate therapy on bone scintigraphy results. Clin Exp Metastasis. 2003;20(2):171–80.

    Article  CAS  PubMed  Google Scholar 

  58. Coleman RE. Skeletal complications of malignancy. Cancer. 1997;80(8 Suppl):1588–94.

    Article  CAS  PubMed  Google Scholar 

  59. Thomas RJ, Guise TA, Yin JJ, Elliott J, Horwood NJ, Martin TJ, et al. Breast cancer cells interact with osteoblasts to support osteoclast formation. Endocrinology. 1999;140(10):4451–8.

    CAS  PubMed  Google Scholar 

  60. Guise TA, Yin JJ, Taylor SD, Kumagai Y, Dallas M, Boyce BF, et al. Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J Clin Invest. 1996;98(7):1544–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Liao J, Li X, Koh AJ, Berry JE, Thudi N, Rosol TJ, et al. Tumor expressed PTHrP facilitates prostate cancer-induced osteoblastic lesions. Int J Cancer. 2008;123(10):2267–78.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Orr FW, Lee J, Duivenvoorden WC, Singh G. Pathophysiologic interactions in skeletal metastasis. Cancer. 2000;88(12 Suppl):2912–8.

    Article  CAS  PubMed  Google Scholar 

  63. Sethi N, Dai X, Winter CG, Kang Y. Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell. 2011;19(2):192–205.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Yates AJ, Gutierrez GE, Smolens P, Travis PS, Katz MS, Aufdemorte TB, et al. Effects of a synthetic peptide of a parathyroid hormone-related protein on calcium homeostasis, renal tubular calcium reabsorption, and bone metabolism in vivo and in vitro in rodents. J Clin Invest. 1988;81(3):932–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Eilon G, Mundy GR. Direct resorption of bone by human breast cancer cells in vitro. Nature. 1978;276(5689):726–8.

    Article  CAS  PubMed  Google Scholar 

  66. Sanchez-Sweatman OH, Orr FW, Singh G. Human metastatic prostate PC3 cell lines degrade bone using matrix metalloproteinases. Invasion Metastasis. 1998;18(5–6):297–305.

    Google Scholar 

  67. Sanchez-Sweatman OH, Lee J, Orr FW, Singh G. Direct osteolysis induced by metastatic murine melanoma cells: role of matrix metalloproteinases. Eur J Cancer. 1997;33(6):918–25.

    Article  CAS  PubMed  Google Scholar 

  68. Mak IWY, Seidlitz EP, Cowan RW, Turcotte RE, Popovic S, Wu WCH, et al. Evidence for the role of matrix metalloproteinase-13 in bone resorption by giant cell tumor of bone. Hum Pathol. 2010;41(9):1320–9.

    Article  CAS  PubMed  Google Scholar 

  69. Lee J, Weber M, Mejia S, Bone E, Watson P, Orr W. A matrix metalloproteinase inhibitor, batimastat, retards the development of osteolytic bone metastases by MDA-MB-231 human breast cancer cells in Balb C nu/nu mice. Eur J Cancer. 2001;37(1):106–13.

    Article  CAS  PubMed  Google Scholar 

  70. Nagae M, Hiraga T, Wakabayashi H, Wang L, Iwata K, Yoneda T. Osteoclasts play a part in pain due to the inflammation adjacent to bone. Bone. 2006;39(5):1107–15.

    Article  CAS  PubMed  Google Scholar 

  71. Gatenby RA. Acid-mediated tumor invasion: a multidisciplinary study. Cancer Res. 2006;66(10):5216–23.

    Article  CAS  PubMed  Google Scholar 

  72. Rodan GA, Martin TJ. Therapeutic approaches to bone diseases. Science. 2000;289(5484):1508–14.

    Article  CAS  PubMed  Google Scholar 

  73. Powles T, Paterson A, McCloskey E, Schein P, Scheffler B, Tidy A, et al. Reduction in bone relapse and improved survival with oral clodronate for adjuvant treatment of operable breast cancer [ISRCTN83688026]. Breast Cancer Res. 2006;8(2):R13.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Honore P, Luger NM, Sabino MA, Schwei MJ, Rogers SD, Mach DB, et al. Osteoprotegerin blocks bone cancer-induced skeletal destruction, skeletal pain and pain-related neurochemical reorganization of the spinal cord. Nat Med. 2000;6(5):521–8.

    Article  CAS  PubMed  Google Scholar 

  75. Drake MT, Clarke BL, Khosla S. Bisphosphonates: mechanism of action and role in clinical practice. Mayo Clin Proc. 2008;83(9):1032–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Clines GA, Guise TA. Molecular mechanisms and treatment of bone metastasis. Expert Rev Mol Med. 2008;10:e7.

    Article  PubMed  Google Scholar 

  77. Sopata M, Katz N, Carey W, Smith MD, Keller D, Verburg KM, et al. Efficacy and safety of tanezumab in the treatment of pain from bone metastases. Pain. 2015;156(9):1703–13.

    Article  PubMed  Google Scholar 

  78. Zech DF, Grond S, Lynch J, Hertel D, Lehmann KA. Validation of World Health Organization guidelines for cancer pain relief: a 10-year prospective study. Pain. 1995;63(1):65–76.

    Article  CAS  PubMed  Google Scholar 

  79. Mercadante S. Pain treatment and outcomes for patients with advanced cancer who receive follow-up care at home. Cancer. 1999;85(8):1849–58.

    Article  CAS  PubMed  Google Scholar 

  80. Casuccio A, Mercadante S, Fulfaro F. Treatment strategies for cancer patients with breakthrough pain. Expert Opin Pharmacother. 2009;10(6):947–53.

    Article  CAS  PubMed  Google Scholar 

  81. Benyamin R, Trescot AM, Datta S, Buenaventura R, Adlaka R, Sehgal N, et al. Opioid complications and side effects. Pain Physician. 2008;11(2 Suppl):S105–20.

    PubMed  Google Scholar 

  82. Meuser T, Pietruck C, Radbruch L, Stute P, Lehmann KA, Grond S. Symptoms during cancer pain treatment following WHO-guidelines: a longitudinal follow-up study of symptom prevalence, severity and etiology. Pain. 2001;93(3):247–57.

    Article  CAS  PubMed  Google Scholar 

  83. Brater DC. Effects of nonsteroidal anti-inflammatory drugs on renal function: focus on cyclooxygenase-2-selective inhibition. Am J Med. 1999;107(6A):65S–70S; discussion 70S–71S.

    Google Scholar 

  84. Wolfe MM, Lichtenstein DR, Singh G. Gastrointestinal toxicity of nonsteroidal antiinflammatory drugs. N Engl J Med. 1999;340(24):1888–99.

    Article  CAS  PubMed  Google Scholar 

  85. Cleeland CS, Gonin R, Baez L, Loehrer P, Pandya KJ. Pain and treatment of pain in minority patients with cancer. The eastern cooperative oncology group minority outpatient pain study. Ann Intern Med. 1997;127(9):813–6.

    Article  CAS  PubMed  Google Scholar 

  86. Pargeon KL, Hailey BJ. Barriers to effective cancer pain management: a review of the literature. J Pain Symptom Manage. 1999;18(5):358–68.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurmit Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ungard, R.G., Buckley, N., Singh, G. (2016). Cancer-Induced Pain. In: Singh, G. (eds) Oncodynamics: Effects of Cancer Cells on the Body. Springer, Cham. https://doi.org/10.1007/978-3-319-28558-0_7

Download citation

Publish with us

Policies and ethics