Skip to main content

Optimization of Statistical Evaluation Measures for Classification by Median Learning Vector Quantization

  • Conference paper
  • First Online:
Advances in Self-Organizing Maps and Learning Vector Quantization

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 428))

  • 892 Accesses

Abstract

Prototype-based classification is mainly influenced by the family of learning vector quantizers (LVQ) as introduced by Kohonen. The main goal is to optimize the classification accuracy while the prototypes explore the class distribution in the data space. Recent variants can deal also with dissimilarity data, i.e. only the dissimilarities between the data objects are given. Otherwise, classification accuracy may be not appropriate to judge the classification performance, for example for imbalanced data or in medical applications, where frequently sensitivity and specificity are favored. In this paper we develop a median LVQ-variant optimizing those statistical classification evaluation measures, if only dissimilarity data are available. Thus, the presented approach is the discrete counterpart of a recently proposed LVQ-approach for optimization of statistical measures in case of vectorial data. For this purpose, we make use of a probabilistic description of the classification decision proposed in Robust Soft LVQ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For a mathematical definition of a dissimilarity measure we refer to [20].

References

  1. Blake, C., Merz, C.: UCI repository of machine learning databases. University of California, Department of Information and Computer Science, Irvine, CA. http://www.ics.edu/mlearn/MLRepository.html (1998)

  2. Cottrell, M., Hammer, B., Hasenfu, A., Villmann, T.: Batch and median neural gas. Neural Netw. 19, 762–771 (2006)

    Article  MATH  Google Scholar 

  3. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27, 861–874 (2006)

    Article  Google Scholar 

  4. Geweniger, T., Fischer, L., Kaden, M., Lange, M., Villmann, T.: Clustering by fuzzy neural gas and evaluation of fuzzy clusters. Comput. Intell. Neurosci. 2013, Article ID 165248 (2013). doi:10.1155/2013/165248

    Google Scholar 

  5. Hammer, B., Hasenfuss, A.: Topographic mapping of large dissimilarity data sets. Neural Comput. 22(9), 2229–2284 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hammer, B., Hofmann, D., Schleif, F.-M., Zhu, X.: Learning vector quantization for (dis-)similarities. Neurocomputing, page in press (2013)

    Google Scholar 

  7. Hathaway, R., Bezdek, J.: NERF c-means: non-Euclidean relational fuzzy clustering. Pattern Recogn. 27(3), 429–437 (1994)

    Article  Google Scholar 

  8. Hathaway, R., Davenport, J., Bezdek, J.: Relational duals of the c-means clustering algorithms. Pattern Recogn. 22(3), 205–212 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hermann, W., Barthel, H., Hesse, S., Grahmann, F., Kühn, H.-J., Wagner, A., Villmann, T.: Comparison of clinical types of Wilson’s disease and glucose metabolism in extrapyramidal motor brain regions. J. Neurol. 249(7), 896–901 (2002)

    Article  Google Scholar 

  10. Jaccard, P.: The distribution of the flora in the alpine zone. New Phytol. 11, 37–50 (1912)

    Article  Google Scholar 

  11. Kaden, M., Hermann, W., Villmann, T.: Optimization of general statistical accuracy measures for classification based on learning vector quantization. In: Verleysen, M. (ed.) Proceedings of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN’2014), pp. 47–52, Louvain-La-Neuve, Belgium (2014). i6doc.com

    Google Scholar 

  12. Kaden, M., Lange, M., Nebel, D., Riedel, M., Geweniger, T., Villmann, T.: Aspects in classification learning—Review of recent developments in Learning Vector Quantization. Found. Comput. Decis. Sci. 39(2), 79–105 (2014)

    MathSciNet  Google Scholar 

  13. Kohonen, T.: Learning vector quantization for pattern recognition. Report TKK-F-A601, Helsinki University of Technology, Espoo, Finland (1986)

    Google Scholar 

  14. Kohonen, T.: Self-Organizing Maps. Springer Series in Information Sciences, vol. 30. Springer, Berlin, Heidelberg (1995)

    Google Scholar 

  15. Matthews, B.: Comparison of the predicted and observed secondary structure of T4 phage Iysozyme. Biochimica et Biophysica Acta 405, 442–451 (1975)

    Article  Google Scholar 

  16. Nebel, D., Hammer, B., Frohberg, K., Villmann, T.: Median variants of learning vector quantization for learning of dissimilarity data. Neurocomputing 169, 295–305 (2015)

    Article  Google Scholar 

  17. Nebel, D., Hammer, B., Villmann, T.: Supervised generative models for learning dissimilarity data. In: Verleysen, M. (ed.) Proceedings of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN’2014), pp. 35–40, Louvain-La-Neuve, Belgium (2014). i6doc.com

    Google Scholar 

  18. Nebel, D., Villmann, T.: A median variant of generalized learning vector quantization. In: Lee, M., Hirose, A., Hou, Z.-G., Kil, R. (eds.) Proceedings of International Conference on Neural Information Processing (ICONIP). LNCS, vol. II, pp. 19–26. Springer-Verlag, Berlin (2013)

    Google Scholar 

  19. Nova, D., Estévez, P.: A review of learning vector quantization classifiers. Neural Comput. Appl. (2013)

    Google Scholar 

  20. Pekalska, E., Duin, R.: The Dissimilarity Representation for Pattern Recognition: Foundations and Applications. World Scientific (2006)

    Google Scholar 

  21. Rijsbergen, C.: Information Retrieval, 2nd edn. Butterworths, London (1979)

    Google Scholar 

  22. Rogers, D.J., Tanimoto, T.: A computer program for classifying plants. Science 132(3434), 1115–1118 (1960)

    Article  Google Scholar 

  23. Sato, A., Yamada, K.: Generalized learning vector quantization. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in Neural Information Processing Systems 8. Proceedings of the 1995 Conference, pp. 423–429. MIT Press, Cambridge, MA, USA (1996)

    Google Scholar 

  24. Seo, S., Obermayer, K.: Soft learning vector quantization. Neural Comput. 15, 1589–1604 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Villmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Nebel, D., Villmann, T. (2016). Optimization of Statistical Evaluation Measures for Classification by Median Learning Vector Quantization. In: Merényi, E., Mendenhall, M., O'Driscoll, P. (eds) Advances in Self-Organizing Maps and Learning Vector Quantization. Advances in Intelligent Systems and Computing, vol 428. Springer, Cham. https://doi.org/10.1007/978-3-319-28518-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28518-4_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28517-7

  • Online ISBN: 978-3-319-28518-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics