Skip to main content

Fundamentals of Process Intensification: A Process Systems Engineering View

  • Chapter
  • First Online:
Process Intensification in Chemical Engineering

Abstract

This chapter gives an overview of the fundamentals of process intensification from a process systems engineering point of view. The concept of process intensification, including process integration, is explained together with the drivers for applying process intensification, which can be achieved at different scales of size, that is, the unit operation scale, the task scale, and the phenomena scale. The roles of process intensification with respect to process improvements and the generation of more sustainable process designs are discussed and questions related to when to apply process intensification and how to apply process intensification are answered through illustrative examples. The main issues and needs for generation of more sustainable process alternatives through process intensification are discussed in terms of the need for a systematic computer-aided framework and the methods and tools that should be employed through it. The process for the production of methyl-acetate is used as an example to highlight the generation of more sustainable process alternatives through this framework. Perspectives, conclusions, and future work are proposed in order to further develop the field of process intensification using a systems approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gani R, Babi DK (2014) Systematic computer aided framework for process synthesis, design and intensification. In: Letcher T, Scott J, Darrell PA (eds) Chemical processes for a sustainable future. Royal Chemical Society, Cambridge, pp 698–752

    Google Scholar 

  2. Babi DK, Lutze P, Woodley JM, Gani R (2014) A process synthesis-intensification framework for the development of sustainable membrane-based operations. Chem Eng Process 86:173–195. doi:10.1016/j.cep.2014.07.001

    Article  CAS  Google Scholar 

  3. Moulijn JA, Stankiewicz A, Grievink J, Górak A (2008) Process intensification and process systems engineering: a friendly symbiosis. Comput Chem Eng 32(1–2):3–11. doi:10.1016/j.compchemeng.2007.05.014

    Article  CAS  Google Scholar 

  4. Stankiewicz A, Moulijn JA (2000) Process intensification: transforming chemical engineering. Chem Eng Prog 96(1):22–24

    CAS  Google Scholar 

  5. Reay D, Ramshaw C, Harvey A (2008). In: Reay D, Ramshaw C, Harvey A (eds) Process intensification. IChemE, Rugby.

    Google Scholar 

  6. Ponce-Ortega JM, Al-Thubaiti MM, El-Halwagi MM (2012) Process intensification: new understanding and systematic approach. Chem Eng Process 53:63–75. doi:10.1016/j.cep.2011.12.010

    Article  CAS  Google Scholar 

  7. Bessling B, Schembecker G, Simmrock KH (1997) Design of processes with reactive distillation line diagrams. Ind Eng Chem Res 36(8):3032–3042. doi:10.1021/ie960727p

    Article  CAS  Google Scholar 

  8. Agreda VH, Partin LR, Heise WH (1990) High-purity methyl acetate via reactive distillation. Chem Eng Prog 86(2):40–46

    CAS  Google Scholar 

  9. Freund H, Sundmacher K (2008) Towards a methodology for the systematic analysis and design of efficient chemical processes. Chem Eng Process 47(12):2051–2060. doi:10.1016/j.cep.2008.07.011

    Article  CAS  Google Scholar 

  10. Lutze P, Babi DK, Woodley JM, Gani R (2013) Phenomena based methodology for process synthesis incorporating process intensification. Ind Eng Chem Res 52(22):7127–7144. doi:10.1021/ie302513y

    Article  CAS  Google Scholar 

  11. Siirola JJ (1996) Strategic process synthesis: advances in the hierarchical approach. Comput Chem Eng 20:S1637–S1643. doi:10.1016/0098-1354(96)85982-5

    Article  CAS  Google Scholar 

  12. Papalexandri KP, Pistikopoulos EN (1994) A multiperiod MINLP model for the synthesis of flexible heat and mass exchange networks. Comput Chem Eng 18(11–12):1125–1139. doi:10.1016/0098-1354(94)E0022-F

    Article  CAS  Google Scholar 

  13. Peschel A, Jörke A, Freund H, Sundmacher K (2012) Model-based development of optimal reaction concepts for plant wide process intensification. Comput Aided Chem Eng 31:150–154. doi:10.1016/B978-0-444-59507-2.50022-6

    Article  CAS  Google Scholar 

  14. Lutze P, Román-Martinez A, Woodley JM, Gani R (2012) A systematic synthesis and design methodology to achieve process intensification in (bio) chemical processes. Comput Chem Eng 36:189–207. doi:10.1016/j.compchemeng.2011.08.005

    Article  CAS  Google Scholar 

  15. El-Halwagi MM (1997) Pollution prevention through process integration: systematic design tools. Academic, San Diego

    Google Scholar 

  16. El-Halwagi MM (2006) Process systems engineering- process integration. Elsevier

    Google Scholar 

  17. Smith R (2005) Chemical process: design and integration. WILEY-VCH Verlag GmbH, Weinheim

    Google Scholar 

  18. Klemeš JJ, Varbanov PS, Kravanja Z (2013) Recent developments in process integration. Chem Eng Res Des 91(10):2037–2053. doi:10.1016/j.cherd.2013.08.019

    Article  Google Scholar 

  19. Harmsen J (2010) Process intensification in the petrochemicals industry: drivers and hurdles for commercial implementation. Chem Eng Process 49(1):70–73. doi:10.1016/j.cep.2009.11.009

    Article  CAS  Google Scholar 

  20. Linnhoff B, Townsend DW, Boland D, Hewitt GF, Thomas BEA, Guy AR, Marsland RH (1982) A user guide on process integration for the efficient use of energy. IChemE, Rugby

    Google Scholar 

  21. Papoulias SA, Grossmann IE (1983) A structural optimization approach in process synthesis—II. Comput Chem Eng 7(6):707–721. doi:10.1016/0098-1354(83)85023-6

    Article  CAS  Google Scholar 

  22. Singhvi A, Madhavan KP, Shenoy UV (2004) Pinch analysis for aggregate production planning in supply chains. Comput Chem Eng 28(6–7):993–999. doi:10.1016/j.compchemeng.2003.09.006

    Article  CAS  Google Scholar 

  23. Kazantzi V, El-Halwagi MM (2005) Targeting material reuse via property integration. Chemical Engineering Progress 101(8), 28–37. http://www.scopus.com/inward/record.url?eid=2-s2.0-27844440901&partnerID=tZOtx3y1

  24. Babi DK, Holtbruegge J, Lutze P, Gorak A, Woodley JM, Gani R (2015) Sustainable process synthesis–intensification. Comput Chem Eng 81:218–244. doi:10.1016/j.compchemeng.2015.04.030

    Article  CAS  Google Scholar 

  25. Oxley P, Brechtelsbauer C, Ricard F, Lewis N, Ramshaw C (2000) Evaluation of spinning disk reactor technology for the manufacture of pharmaceuticals. Ind Eng Chem Res 39(7):2175–2182. doi:10.1021/ie990869u

    Article  CAS  Google Scholar 

  26. Lutze P, Gorak A (2013) Reactive and membrane-assisted distillation: recent developments and perspective. Chem Eng Res Des 91(10):1978–1997. doi:10.1016/j.cherd.2013.07.011

    Article  CAS  Google Scholar 

  27. Asprion N, Kaibel G (2010) Dividing wall columns: fundamentals and recent advances. Chem Eng Process 49(2):139–146. doi:10.1016/j.cep.2010.01.013

    Article  CAS  Google Scholar 

  28. Alfa Laval (2015) A new degree of deodorization control. http://local.alfalaval.com/de-de/wichtige-industrien/lebensmittel-molkerei-getraenke/oele/Documents/Desodorierung_Alfa%20Laval%20SoftFlex%E2%84%A2%20semi-continuous.pdf

  29. Alfa L (2015) Gasketed plate-and-frame heat exchangers. Heat Exchangers. http://www.alfalaval.com/products/heat-transfer/plate-heat-exchangers/Gasketed-plate-and-frame-heat-exchangers/

  30. Ramshaw C (1993) The opportunities for exploiting centrifugal fields. Heat Recovery Syst CHP 13(6):493–513. doi:10.1016/0890-4332(93)90003-E

    Article  CAS  Google Scholar 

  31. Al Taweel AM, Yan J, Azizi F, Odedra D, Gomaa HG (2005) Using in-line static mixers to intensify gas–liquid mass transfer processes. Chem Eng Sci 60(22):6378–6390. doi:10.1016/j.ces.2005.03.011

    Article  CAS  Google Scholar 

  32. Babi DK, Gani R (2014) Hybrid distillation schemes: design, analysis, and application. In: Gorak A, Sorensen E (eds) Distillation. Elsevier, London, pp 357–381. doi:10.1016/B978-0-12-386547-2.00009-0

    Google Scholar 

  33. Linnhoff B, Flower JR (1978) Synthesis of heat exchanger networks: I. Systematic generation of energy optimal networks. AIChE J 24(4):633–642. doi:10.1002/aic.690240411

    Article  CAS  Google Scholar 

  34. Zhao CY, Lu W, Tassou SA (2006) Thermal analysis on metal-foam filled heat exchangers. Part II: tube heat exchangers. Int J Heat Mass Transf 49(15–16):2762–2770. doi:10.1016/j.ijheatmasstransfer.2005.12.014

    Article  Google Scholar 

  35. Osakada K, Shiomi M (2006) Flexible manufacturing of metallic products by selective laser melting of powder. Int J Mach Tool Manuf 46(11):1188–1193. doi:10.1016/j.ijmachtools.2006.01.024

    Article  Google Scholar 

  36. El-Halwagi MM, Manousiouthakis V (1989) Synthesis of mass exchange networks. AIChE J 35:1233–1244. doi:10.1002/aic.690350802

    Article  CAS  Google Scholar 

  37. Stankiewicz A, Moulijn JA (2004) Re-engineering the chemical processing plant. Marcel-Dekker, New York

    Google Scholar 

  38. Peschel A, Karst F, Freund H, Sundmacher K (2011) Analysis and optimal design of an ethylene oxide reactor. Chem Eng Sci 66(24):6453–6469. doi:10.1016/j.ces.2011.08.054

    Article  CAS  Google Scholar 

  39. Calvar N, González B, Dominguez A (2007) Esterification of acetic acid with ethanol: reaction kinetics and operation in a packed bed reactive distillation column. Chem Eng Process 46(12):1317–1323. doi:10.1016/j.cep.2006.10.007

    Article  CAS  Google Scholar 

  40. Liu G, Gan L, Liu S, Zhou H, Wei W, Jin W (2014) PDMS/ceramic composite membrane for pervaporation separation of acetone–butanol–ethanol (ABE) aqueous solutions and its application in intensification of ABE fermentation process. Chem Eng Process 86:162–172. doi:10.1016/j.cep.2014.06.013

    Article  CAS  Google Scholar 

  41. Leyva-Díaz JC, López-López C, Martín-Pascual J, Muñío MM, Poyatos JM (2015) Kinetic study of the combined processes of a membrane bioreactor and a hybrid moving bed biofilm reactor-membrane bioreactor with advanced oxidation processes as a post-treatment stage for wastewater treatment. Chem Eng Process 91:57–66. doi:10.1016/j.cep.2015.03.017

    Article  Google Scholar 

  42. Jordens J, Gielen B, Braeken L, Van Gerven T (2014) Determination of the effect of the ultrasonic frequency on the cooling crystallization of paracetamol. Chem Eng Process 84:38–44. doi:10.1016/j.cep.2014.01.006

    Article  CAS  Google Scholar 

  43. Werth K, Lutze P, Kiss AA, Stankiewicz AI, Stefanidis GD, Górak A (2015) A systematic investigation of microwave-assisted reactive distillation: influence of microwaves on separation and reaction. Chem Eng Process 93:87–97. doi:10.1016/j.cep.2015.05.002

    Article  CAS  Google Scholar 

  44. Douglas JM (1985) A hierarchical decision procedure for process synthesis. AIChE J 31(3):353–362. doi:10.1002/aic.690310302

    Article  CAS  Google Scholar 

  45. Bayer B, Schneider R, Marquardt W (2000) Integration of data models for process design—first steps and experiences. Comput Chem Eng 24(2–7):599–605. doi:10.1016/S0098-1354(00)80002-2

    Article  CAS  Google Scholar 

  46. Gernaey KV, Gani R (2010) A model-based systems approach to pharmaceutical product-process design and analysis. Chem Eng Sci 65(21):5757–5769. doi:10.1016/j.ces.2010.05.003

    Article  CAS  Google Scholar 

  47. Hostrup M, Gani R, Kravanja Z, Sorsak A, Grossmann I (2001) Integration of thermodynamic insights and MINLP optimization for the synthesis, design and analysis of process flowsheets. Comput Chem Eng 25(1):73–83. doi:10.1016/S0098-1354(00)00634-7

    Article  CAS  Google Scholar 

  48. Grossmann IE (2012) Advances in mathematical programming models for enterprise-wide optimization. Comput Chem Eng 47:2–18. doi:10.1016/j.compchemeng.2012.06.038

    Article  CAS  Google Scholar 

  49. Siirola JJ, Powers GJ, Rudd DF (1971) Synthesis of system designs: III. Toward a process concept generator. AIChE J 17(3):677–682. doi:10.1002/aic.690170334

    Article  Google Scholar 

  50. Kobus A, Kuppinger F-F, Meier R, Düssel R, Tuchlenski A, Nordhoff S (2001) Improvement of conventional unit operations by hybrid separation technologies—a review of industrial applications. Chem Ing Tech 73(6):714. doi:10.1002/1522-2640(200106)73:6<714::AID-CITE7142222>3.0.CO;2-S

    Article  Google Scholar 

  51. d’Anterroches L, Gani R (2005) Group contribution based process flowsheet synthesis, design and modelling. Fluid Phase Equilib 228–229:141–146. doi:10.1016/j.fluid.2004.08.018

    Article  Google Scholar 

  52. Kiss A, Pragt H, van Strien C (2007) Computer aided chemical engineering. In: 17th European Symposium on Computer Aided Process Engineering, vol 24, Elsevier, Amsterdam, pp 467–472. doi:10.1016/S1570-7946(07)80101-5

    Google Scholar 

  53. Caballero JA, Grossmann IE (2004) Design of distillation sequences: from conventional to fully thermally coupled distillation systems. Comput Chem Eng 28(11):2307–2329. doi:10.1016/j.compchemeng.2004.04.010

    Article  CAS  Google Scholar 

  54. Madenoor Ramapriya G, Tawarmalani M, Agrawal R (2014) Thermal coupling links to liquid-only transfer streams: a path for new dividing wall columns. AIChE J 60(8):2949–2961. doi:10.1002/aic.14468

    Article  CAS  Google Scholar 

  55. Urselmann M, Barkmann S, Sand G, Engell S (2011) Optimization-based design of reactive distillation columns using a memetic algorithm. Comput Chem Eng 35(5):787–805. doi:10.1016/j.compchemeng.2011.01.038

    Article  CAS  Google Scholar 

  56. Amte V (2011) Computer aided chemical engineering, vol 29. doi:10.1016/B978-0-444-53711-9.50144-9

    Google Scholar 

  57. Seifert T, Sievers S, Bramsiepe C, Schembecker G (2012) Small scale, modular and continuous: a new approach in plant design. Chem Eng Process 52:140–150. doi:10.1016/j.cep.2011.10.007

    Article  CAS  Google Scholar 

  58. Jaksland C, Gani R, Lien K (1995) Separation process design and synthesis based on thermodynamic insights. Chem Eng Sci 50:511–530. doi:10.1016/0009-2509(94)00216-E

    Article  CAS  Google Scholar 

  59. Harper PM, Gani R (2000) A multi-step and multi-level approach for computer aided molecular design. Comput Chem Eng 24(2–7):677–683. doi:10.1016/S0098-1354(00)00410-5

    Article  CAS  Google Scholar 

  60. Gani R, Hytoft G, Jaksland C, Jensen AK (1997) An integrated computer aided system for integrated design of chemical processes. Comput Chem Eng 21(10):1135–1146. doi:10.1016/S0098-1354(96)00324-9

    Article  CAS  Google Scholar 

  61. Peters MS, Timmerhaus KD, West RE (2003) Sign and economics for chemical engineers. In: Peters MS, Timmerhaus KD, West RE (eds) 5th edn. Mc Graw Hill, New York. http://catalogs.mhhe.com/mhhe/viewProductDetails.do?isbn=0072392665

  62. Carvalho A, Matos HA, Gani R (2013) SustainPro—a tool for systematic process analysis, generation and evaluation of sustainable design alternatives. Comput Chem Eng 50:8–27. doi:10.1016/j.compchemeng.2012.11.007

    Article  CAS  Google Scholar 

  63. Kalakul S, Malakul P, Siemanond K, Gani R (2014) Integrated of life cycle assessment software with tools for economic and sustainability analyses and process simulation for sustainable process design. J Clean Prod 71:98–109. doi:10.1016/j.jclepro.2014.01.022

    Article  CAS  Google Scholar 

  64. Marrero J, Gani R (2001) Group contribution based estimation of pure component properties. Fluid Phase Equilib 183–184:183–208. doi:10.1016/S0378-3812(01)00431-9

    Article  Google Scholar 

  65. Huss RS, Chen F, Malone MF, Doherty MF (2003) Reactive distillation for methyl acetate production. Comput Chem Eng 27(12):1855–1866. doi:10.1016/S0098-1354(03)00156-X

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafiqul Gani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Babi, D.K., Cruz, M.S., Gani, R. (2016). Fundamentals of Process Intensification: A Process Systems Engineering View. In: Segovia-Hernández, J., Bonilla-Petriciolet, A. (eds) Process Intensification in Chemical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-28392-0_2

Download citation

Publish with us

Policies and ethics