Skip to main content

NMR-Based Metabolomics: The Foodome and the Assessment of Dietary Exposure as a Key Step to Evaluate the Effect of Diet on Health

  • Reference work entry
  • First Online:
Modern Magnetic Resonance

Abstract

NMR-based metabolomics has gained important insight into the associations between the metabolic status and health, as metabolomics signatures are found in blood, urine, stools, or saliva, differentiating healthy subjects from those affected by diseases or disorders. Although health status has been linked to diet, a measurable fingerprint is rarely found within the metabolome, demonstrating that the diet is curing or, at least, is modifying the subject metabolome away from or closer to a healthy status. The success in finding the correlation between the metabolome and a diet-related disease has, as the main obstacle, the inability to characterize the actual diet followed by the subject. Thus, a big scientific effort has been launched to find metabolite patterns which are characterizing precisely the personal food consumption in order to classify people according to their actual diet. Most of the studies based on NMR-metabolomics are focused on finding biomarkers within the dietary exposome, e.g., originating from food or gut microbiota, without a specific focus on the endogenous metabolome. The main drawback in such approach is a combination of: (i) the actual composition of the meal, (ii) the bioaccessibility of bioactive compounds, and (iii) the processing capability of the gut microbiota. In this chapter, these three aspects are illustrated, where NMR spectroscopy (effectively or potentially) gains relevant information in the discovery of biomarkers for the true food consumption, as a preliminary step in successful “dietary effect studies.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O’Sullivan A, Gibney MJ, Brennan L. Dietary intake patterns are reflected in metabolomic profiles: potential role in dietary assessment studies. Am J Clin Nutr. 2011;93(2):314–21.

    Article  CAS  Google Scholar 

  2. Brennan L, Gibbons H, O’Gorman A. An overview of the role of metabolomics in the identification of dietary biomarkers. Curr Nutr Reports. 2015;4(4):304–12.

    Article  CAS  Google Scholar 

  3. Saude EJ, et al. Variation of metabolites in normal human urine. Metabolomics. 2007;3(4):439–51.

    Article  CAS  Google Scholar 

  4. Enea C, et al. H-1 NMR-based metabolomics approach for exploring urinary metabolome modifications after acute and chronic physical exercise. Anal Bioanal Chem. 2010;396(3):1167–76.

    Article  CAS  Google Scholar 

  5. O’Gorman A, Brennan L. The role of metabolomics in determination of new dietary biomarkers. Proc Nutr Soc. 2017;76:295–302.

    Article  CAS  Google Scholar 

  6. Manach C, et al. Addressing the inter-individual variation in response to consumption of plant food bioactives: towards a better understanding of their role in healthy aging and cardiometabolic risk reduction. Mol Nutr Food Res. 2017;61(6):1600557.

    Article  CAS  Google Scholar 

  7. Scalbert A, et al. The food metabolome: a window over dietary exposure. Am J Clin Nutr. 2014;99(6):1286–308.

    Article  CAS  Google Scholar 

  8. Bouatra S, et al. The human urine metabolome. PLoS One. 2013;8(9):28.

    Article  CAS  Google Scholar 

  9. Bernini P, et al. Standard operating procedures for pre-analytical handling of blood and urine for metabolomic studies and biobanks. J Biomol NMR. 2011;49(3–4):231–43.

    Article  CAS  Google Scholar 

  10. Karimpour M, et al. Postprandial metabolomics: a pilot mass spectrometry and NMR study of the human plasma metabolome in response to a challenge meal. Anal Chim Acta. 2016;908:121–31.

    Article  CAS  Google Scholar 

  11. Emwas AH, et al. Standardizing the experimental conditions for using urine in NMR-based metabolomic studies with a particular focus on diagnostic studies: a review. Metabolomics. 2015;11(4):872–94.

    Article  CAS  Google Scholar 

  12. Dieterle F, et al. Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in H-1 NMR metabonomics. Anal Chem. 2006;78(13):4281–90.

    Article  CAS  Google Scholar 

  13. Veselkov KA, et al. Recursive segment-wise peak alignment of biological H-1 NMR spectra for improved metabolic biomarker recovery. Anal Chem. 2009;81(1):56–66.

    Article  CAS  Google Scholar 

  14. Kruger NJ, Troncoso-Ponce MA, Ratcliffe RG. H-1 NMR metabolite fingerprinting and metabolomic analysis of perchloric acid extracts from plant tissues. Nat Protoc. 2008;3(6): 1001–12.

    Article  CAS  Google Scholar 

  15. Millen B, et al. Scientific report of the 2015 Dietary Guidelines Advisory Committee. Part D. Chapter 2: dietary patterns, foods and nutrients, and health outcomes. 2015 [cited 2017 June 2017]; Available from: http://health.gov/dietaryguidelines/2015-scientific-report/.

  16. Liu HY, et al. A H-1 NMR-based approach to investigate metabolomic differences in the plasma and urine of young women after cranberry juice or apple juice consumption. J Funct Foods. 2015;14:76–86.

    Article  CAS  Google Scholar 

  17. Llorach R, et al. An LC-MS-based metabolomics approach for exploring urinary metabolome modifications after cocoa consumption. J Proteome Res. 2009;8(11):5060–8.

    Article  CAS  Google Scholar 

  18. Walsh MC, et al. Influence of acute phytochemical intake on human urinary metabolomic profiles. Am J Clin Nutr. 2007;86(6):1687–93.

    Article  CAS  Google Scholar 

  19. Van Dorsten FA, et al. Metabonomics approach to determine metabolic differences between green tea and black tea consumption. J Agric Food Chem. 2006;54(18):6929–38.

    Article  CAS  Google Scholar 

  20. Kresty LA, Howell AB, Baird M. Cranberry proanthocyanidins mediate growth arrest of lung cancer cells through modulation of gene expression and rapid induction of apoptosis. Molecules. 2011;16(3):2375–90.

    Article  CAS  Google Scholar 

  21. Vazquez-Fresno R, et al. 1H-NMR-based metabolomic analysis of the effect of moderate wine consumption on subjects with cardiovascular risk factors. Electrophoresis. 2012;33(15): 2345–54.

    Article  CAS  Google Scholar 

  22. van Duynhoven J, et al. Metabolic fate of polyphenols in the human superorganism. Proc Natl Acad Sci USA. 2011;108:4531–8.

    Article  Google Scholar 

  23. Arumugam M, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346): 174–80.

    Article  CAS  Google Scholar 

  24. Wishart DS, et al. HMDB 3.0-The human metabolome database in 2013. Nucleic Acids Res. 2013;41(D1):D801–7.

    Article  CAS  Google Scholar 

  25. Bordoni A, Capozzi F. The foodomics approach for discovering biomarkers of food consumption in nutrition studies. Curr Opin Food Sci. 2015;4:124–8.

    Article  Google Scholar 

  26. van Duynhoven JPM, Jacobs DM. Assessment of dietary exposure and effect in humans: the role of NMR. Prog Nucl Magn Reson Spectrosc. 2016;96:58–72.

    Article  CAS  Google Scholar 

  27. Capozzi F, Trimigno A. Using metabolomics to describe food in detail. In: Metabolomics as a tool in nutrition research. Elsevier; Cambridge; 2015. p. 204–29.

    Chapter  Google Scholar 

  28. Laghi L, Picone G, Capozzi F. Nuclear magnetic resonance for foodomics beyond food analysis. Trac-Trends Anal Chem. 2014;59:93–102.

    Article  CAS  Google Scholar 

  29. Mannina L, Sobolev AP, Viel S. Liquid state H-1 high field NMR in food analysis. Prog Nucl Magn Reson Spectrosc. 2012;66:1–39.

    Article  CAS  Google Scholar 

  30. Lang R, et al. High-throughput quantitation of proline betaine in foods and suitability as a valid biomarker for citrus consumption. J Agric Food Chem. 2017;65(8):1613–9.

    Article  CAS  Google Scholar 

  31. Picone G, et al. Metabolic changes of genetically engineered grapes (Vitis vinifera L.) studied by H-1-NMR, metabolite heatmaps and iPLS. Metabolomics. 2016;12(10):12.

    Article  CAS  Google Scholar 

  32. Parpinello GP, et al. Chemical and sensory characterization of Sangiovese red wines: comparison between biodynamic and organic management. Food Chem. 2015;167:145–52.

    Article  CAS  Google Scholar 

  33. Lee JE, et al. Metabolomic unveiling of a diverse range of green tea (Camellia sinensis) metabolites dependent on geography. Food Chem. 2015;174:452–9.

    Article  CAS  Google Scholar 

  34. Laghi L, et al. Metabonomic investigation by 1H-NMR to discriminate between red wines from organic and biodynamic grapes. Food Nutr Sci. 2014;5:52–9.

    CAS  Google Scholar 

  35. Picone G, et al. H-1 NMR foodomics reveals that the biodynamic and the organic cultivation managements produce different grape berries (Vitis vinifera L. cv. Sangiovese). Food Chem. 2016;213:187–95.

    Article  CAS  Google Scholar 

  36. Sacchi R, et al. A high-field 1H nuclear magnetic resonance study of the minor components in virgin olive oils. J Am Oil Chem Soc. 1996;73(6):747–58.

    Article  CAS  Google Scholar 

  37. Barbaro B, et al. Effects of the olive-derived polyphenol oleuropein on human health. Int J Mol Sci. 2014;15(10):18508–24.

    Article  CAS  Google Scholar 

  38. Ryan D, et al. Biotransformations of phenolic compounds in Olea europaea L. Sci Hortic. 2002;92(2):147–76.

    Article  CAS  Google Scholar 

  39. Piccinonna S, et al. Robustness of NMR-based metabolomics to generate comparable data sets for olive oil cultivar classification. An inter-laboratory study on Apulian olive oils. Food Chem. 2016;199:675–83.

    Article  CAS  Google Scholar 

  40. Mordente A, et al. Lycopene and cardiovascular diseases: an update. Curr Med Chem. 2011;18(8):1146–63.

    Article  CAS  Google Scholar 

  41. Dhuique-Mayer C, et al. Culinary practices mimicking a polysaccharide-rich recipe enhance the bioaccessibility of fat-soluble micronutrients. Food Chem. 2016;210:182–8.

    Article  CAS  Google Scholar 

  42. Castenmiller JJM, West CE. Bioavailability and bioconversion of carotenoids. Annu Rev Nutr. 1998;18:19–38.

    Article  CAS  Google Scholar 

  43. Lopez-Sanchez P, et al. Comprehensive metabolomics to evaluate the impact of industrial processing on the phytochemical composition of vegetable purees. Food Chem. 2015;168:348–55.

    Article  CAS  Google Scholar 

  44. Martinez I, et al. Bioactive compounds in cod (Gadus morhua) products and suitability of H-1 NMR metabolite profiling for classification of the products using multivariate data analyses. J Agric Food Chem. 2005;53(17):6889–95.

    Article  CAS  Google Scholar 

  45. Domingo JL, Nadal M. Carcinogenicity of consumption of red meat and processed meat: a review of scientific news since the IARC decision. Food Chem Toxicol. 2017;105:256–61.

    Article  CAS  Google Scholar 

  46. Vidal NP, et al. Metabolite release and protein hydrolysis during the in vitro digestion of cooked sea bass fillets. A study by H-1 NMR. Food Res Int. 2016;88:293–301.

    Article  CAS  Google Scholar 

  47. Zhang RJ, et al. Influence of emulsifier type on gastrointestinal fate of oil-in-water emulsions containing anionic dietary fiber (pectin). Food Hydrocoll. 2015;45:175–85.

    Article  CAS  Google Scholar 

  48. Arranz S, et al. Influence of olive oil on carotenoid absorption from tomato juice and effects on postprandial lipemia. Food Chem. 2015;168:203–10.

    Article  CAS  Google Scholar 

  49. Zou LQ, et al. Utilizing food matrix effects to enhance nutraceutical bioavailability: increase of curcumin bioaccessibility using excipient emulsions. J Agric Food Chem. 2015;63(7):2052–62.

    Article  CAS  Google Scholar 

  50. Priyadarshani AMB. A review on factors influencing bioaccessibility and bioefficacy of carotenoids. Crit Rev Food Sci Nutr. 2017;57(8):1710–7.

    Article  CAS  Google Scholar 

  51. Li Q, et al. Potential physicochemical basis of Mediterranean diet effect: ability of emulsified olive oil to increase carotenoid bioaccessibility in raw and cooked tomatoes. Food Res Int. 2016;89:320–9.

    Article  CAS  Google Scholar 

  52. Chanforan C, et al. The impact of industrial processing on health-beneficial tomato microconstituents. Food Chem. 2012;134(4):1786–95.

    Article  CAS  Google Scholar 

  53. Reboul E, et al. Bioaccessibility of carotenoids and vitamin E from their main dietary sources. J Agric Food Chem. 2006;54(23):8749–55.

    Article  CAS  Google Scholar 

  54. Ribnicky DM, et al. Effects of a high fat meal matrix and protein complexation on the bioaccessibility of blueberry anthocyanins using the TNO gastrointestinal model (TIM-1). Food Chem. 2014;142:349–57.

    Article  CAS  Google Scholar 

  55. Pineda-Vadillo C, et al. In vitro digestion of dairy and egg products enriched with grape extracts: effect of the food matrix on polyphenol bioaccessibility and antioxidant activity. Food Res Int. 2016;88:284–92.

    Article  CAS  Google Scholar 

  56. Marcolini E, et al. Bioaccessibility of the bioactive peptide carnosine during in vitro digestion of cured beef meat. J Agric Food Chem. 2015;63(20):4973–8.

    Article  CAS  Google Scholar 

  57. Bernini P, et al. Individual human phenotypes in metabolic space and time. J Proteome Res. 2009;8(9):4264–71.

    Article  CAS  Google Scholar 

  58. Nicholls AW, Mortishire-Smith RJ, Nicholson JK. NMR spectroscopic-based metabonomic studies of urinary metabolite variation in acclimatizing germ-free rats. Chem Res Toxicol. 2003;16(11):1395–404.

    Article  CAS  Google Scholar 

  59. Williams RE, et al. Effect of intestinal microflora on the urinary metabolic profile of rats: a H-1-nuclear magnetic resonance spectroscopy study. Xenobiotica. 2002;32(9):783–94.

    Article  CAS  Google Scholar 

  60. De Filippo C, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA. 2010;107(33):14691–6.

    Article  Google Scholar 

  61. Stella C, et al. Susceptibility of human metabolic phenotypes to dietary modulation. J Proteome Res. 2006;5(10):2780–8.

    Article  CAS  Google Scholar 

  62. Massimi M, et al. Effects of resveratrol on HepG2 cells as revealed by H-1-NMR based metabolic profiling. BBA-Gen Subjects. 2012;1820(1):1–8.

    Article  CAS  Google Scholar 

  63. Picone G, et al. Evaluation of the effect of carvacrol on the Escherichia coli 555 metabolome by using H-1-NMR spectroscopy. Food Chem. 2013;141(4):4367–74.

    Article  CAS  Google Scholar 

  64. Vinaixa M, et al. Metabolomic assessment of the effect of dietary cholesterol in the progressive development of fatty liver disease. J Proteome Res. 2010;9(5):2527–38.

    Article  CAS  Google Scholar 

  65. Deng FE, et al. Association between diet-related inflammation, all-cause, all-cancer, and cardiovascular disease mortality, with special focus on prediabetics: findings from NHANES III. Eur J Nutr. 2017;56(3):1085–93.

    Article  CAS  Google Scholar 

  66. Pellis L, et al. Plasma metabolomics and proteomics profiling after a postprandial challenge reveal subtle diet effects on human metabolic status. Metabolomics. 2012;8(2):347–59.

    Article  CAS  Google Scholar 

  67. van Ommen B, et al. Phenotypic flexibility as key factor in the human nutrition and health relationship. Genes Nutr. 2014;9(5):423.

    Article  Google Scholar 

  68. Bingham SA. Biomarkers in nutritional epidemiology. Public Health Nutr. 2002;5(6A):821–7.

    Article  Google Scholar 

  69. Madrid-Gambin F, et al. Urinary H-1 nuclear magnetic resonance metabolomic fingerprinting reveals biomarkers of pulse consumption related to energy-metabolism modulation in a subcohort from the PREDIMED study. J Proteome Res. 2017;16(4):1483–91.

    Article  CAS  Google Scholar 

  70. Holmes E, et al. Human metabolic phenotype diversity and its association with diet and blood pressure. Nature. 2008;453(7193):396–U50.

    Article  CAS  Google Scholar 

  71. Zuppi C, et al. Influence of feeding on metabolite excretion evidenced by urine H-1 NMR spectral profiles: a comparison between subjects living in Rome and subjects living at arctic latitudes (Svaldbard). Clin Chim Acta. 1998;278(1):75–9.

    Article  Google Scholar 

  72. Bordoni A, Capozzi F. Foodomics for healthy nutrition. Curr Opin Clin Nutr Metab Care. 2014;17(5):418–24.

    Article  Google Scholar 

  73. Heinzmann SS, et al. Metabolic profiling strategy for discovery of nutritional biomarkers: proline betaine as a marker of citrus consumption. Am J Clin Nutr. 2010;92(2):436–43.

    Article  CAS  Google Scholar 

  74. Radjursoga M, et al. Metabolic profiles from two different breakfast meals characterized by H-1 NMR-based metabolomics. Food Chem. 2017;231:267–74.

    Article  CAS  Google Scholar 

  75. Garcia-Perez I, et al. Objective assessment of dietary patterns by use of metabolic phenotyping: a randomized, controlled, crossover trial. Lancet Diabetes Endocrinol. 2017;5(3):184–95.

    Article  Google Scholar 

  76. Bertini I, et al. The metabonomic signature of celiac disease. J Proteome Res. 2009;8(1):170–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Dr. Gianfranco Picone for his creative graphic contribution (Fig. 1). He would also like to thank the Section Editor Dr. John Van Duynhoven for his generous comments and support that greatly contributed to improve the final version of the chapter. Finally, he would like to thank the Italian Ministry MIUR (Project ENPADASI: DM 115 / 2013 under the Program H2020-JPI HDHL GA. n.696300) for the financial support to the research work inspiring the main concepts of chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Capozzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Capozzi, F. (2018). NMR-Based Metabolomics: The Foodome and the Assessment of Dietary Exposure as a Key Step to Evaluate the Effect of Diet on Health. In: Webb, G. (eds) Modern Magnetic Resonance. Springer, Cham. https://doi.org/10.1007/978-3-319-28388-3_22

Download citation

Publish with us

Policies and ethics