Skip to main content

Regenerative Therapies

  • Chapter
  • First Online:
Regenerative Medicine - from Protocol to Patient

Abstract

Skin is by far the largest organ in the human body. Its surface ranges between 1.5 and 1.8 m2 and the thickness varies between 0.5 (lower eyelid) and 15 mm (foot sole) in a young average adult, resulting in a tissue volume of 7500–27,000 mm3. The wide range of tissue thickness already indicates that skin has to fulfill a variety of physiological organic tasks, including mechanistic, metabolic, energetic and immunologic aspects. Skin also is the first organ which has been tissue engineered in vitro and translated back into clinical application. It is a prime target for regenerative therapies, not only due to its obvious easy clinical accessibility but also, because skin already is a continuously regenerating organ and therefore a fascinating model to learn more about the human body’s intrinsic regenerative mechanisms.

This book chapter focuses on the regenerative capacities of skin tissue and its comprising cell compartments and explains how the principles of skin regeneration may be translated into clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BAD:

Bcl-2-antagonist of cell death

Bcl-xL:

Transmembrane molecule involved in signal transduction pathways of several anti apoptotic proteins (B-cell lymphoma-extra large)

Ca:

Calcium

EPO:

Erythropoietin

EPOR2:

EPO Receptor 2

EPOβ 1/2:

EPO Receptor β 1 or 2

GSK-3β:

Glykogen Synthase Kinase 3

IL-2:

Interleukine 2

IL-6:

Interleukine 6

IL-8:

Interleukine 8

JAK-1/2:

Janus Kinase 1 or 2 (protein tyrosine kinase)

MAPK:

Mitogen-activated protein kinases

NFκB:

Nuclear factor ‘kappa-light-chain-enhancer’ of activated B-cells

NO:

Nitric oxide

PDGF:

Platelet-derived growth factor

PI3K:

Phosphoinositide 3-kinase

PI3K-Akt:

Signalling pathway regulates several cellular functions including cellular proliferation, growth, survival and mobility

PKB:

Proteinkinase B

PLC:

Phospholipase C

STAT:

Signal Transducer and Activators of transcription

TEN:

Toxic epidermal necrolysis

TGFβ 1-3:

Transforming growth factor beta 1–3

TNF-α:

Tumour Necrosis Factor α

References

  • Aasen T, Belmonte JC (2010) Isolation and cultivation of human keratinocytes from skin or plucked hair for the generation of induced pluripotent stem cells. Nat Protoc 5(2):371–382. Epub 2010 Feb 4

    Article  CAS  PubMed  Google Scholar 

  • Aust MC et al (2008) Percutaneous collagen induction therapy: an alternative treatment for scars, wrincels, and skin laxity. Plast Reconstr Surg 121:1421–1429

    Article  CAS  PubMed  Google Scholar 

  • Bernaudin M et al (1999) A potential role for EPO in focal permanent cerebral ischemia in mice. J Cereb Blood Flow Metab 19:643–651

    Article  CAS  PubMed  Google Scholar 

  • Bodó E et al (2007) Human hair follicles are an extrarenal source and a nonhematopoietic target of EPO. FASEB 21:3346–3354

    Article  Google Scholar 

  • Bollero D et al (2014) Contrast-enhanced ultrasonography evaluation after autologous fat grafting in scar revision. G Chir 35(11/12):266–273

    CAS  PubMed  Google Scholar 

  • Bolognia JL et al (2007) Dermatology. Mosby, St. Louis. ISBN 1-4160-2999-0

    Google Scholar 

  • Brines M et al (2004) EPO mediated tissue protection through an EPO and common beta-subunit heteroreceptor. Proc Natl Acad Sci U S A 101:14907–14912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brines M et al (2008) EPO-mediated tissue protection: reducing collateral damage from primary injury response. J Int Med 264:405–432

    Article  CAS  Google Scholar 

  • Buemi M et al (2004) Recombinant human EPO stimulates angiogenesis and healing of ischemic skin wounds. Shock 22:169–173

    Article  CAS  PubMed  Google Scholar 

  • Burns T et al (2006) Rook’s textbook of dermatology CD-ROM. Wiley-Blackwell, New York, London. ISBN 1405131306

    Google Scholar 

  • Converse JM et al (1975) Inosculation of vessels of skin graft and host bed: a fortuitous encounter. Br J Plast Surg 28:274–282

    Article  CAS  PubMed  Google Scholar 

  • Ferguson MWJ et al (2004) Scar-free healing: from embryonic mechanisms to adult therapeutic intervention. Phil Trans R Soc Lond B 359:839–850

    Article  CAS  Google Scholar 

  • Fernandes KJ et al (2008) Multipotent skin-derived precursors: adult neural crest-related precursors with therapeutic potential. Philos Trans R Soc Lond B Biol Sci 12(363):185–198

    Article  Google Scholar 

  • Ferri C et al (2007) Treatment of severe scleroderma skin ulcers with recombinant human EPO. Clin Exp Dermatol 32:287–290

    Article  CAS  PubMed  Google Scholar 

  • Freedberg IM et al (2003) Fitzpatrick’s dermatology in general medicine. McGraw-Hill, New York

    Google Scholar 

  • Galeano M et al (2004) Recombinant human EPO stimulates angiogenesis and wound healing in the genetically diabetic mouse. Diabetes 53:2509–2517

    Article  CAS  PubMed  Google Scholar 

  • Galeano M et al (2006) Recombinant human EPO improves angiogenesis and wound healing in experimental burn wounds. Crit Care Med 34:1139–1146

    Article  CAS  PubMed  Google Scholar 

  • Hadjipanayi E, Silling AF (2013) Hypoxia-based strategies for angiogenic induction. Organogenesis 9(4):261–272

    Article  PubMed  PubMed Central  Google Scholar 

  • Hadjipanayi E, Silling AF (2014) Regeneration through autologous hypoxia preconditioned plasma. Organogenesis 10(2):164–169

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanazono Y et al (1995) EPO induces tyrosyne phosphorylation of the beta chain of the GM-CSF receptor. Biochem Biophy Res Commun 208:1060–1066

    Article  CAS  Google Scholar 

  • Hollander DA (2004) Reconstruction of extensive soft tissue loss by transplantation of dermal and epidermal equivalents. Zentralbl Chir 129:29–36

    Article  CAS  PubMed  Google Scholar 

  • Lotze MT et al (2007) The great full death: damage-associated molecular pattern molecules and reduction/oxidation regulated immunity. Immunol Rev 220:60–81

    Article  CAS  PubMed  Google Scholar 

  • McGrath JA et al (1971) Embryology of human skin. A review of ultrastructural studies. The Herman Beerman Lecture. J Invest Dermatol 57:133–143

    Article  Google Scholar 

  • Meenakshi J et al (2005) Keloids and hyperthropic scars: a review. Indian J Plast Surg 38:175–179

    Article  Google Scholar 

  • Occleston NL et al (2008) Prevention and reduction of scarring in the skin by Transforming Growth Factor beta 3 (TGFbeta3): from laboratory discovery to clinical pharmaceutical. J Biomater Sci Polym Ed 19(8):1047–1063

    Article  CAS  PubMed  Google Scholar 

  • Peterson TE et al (2007) EPO tecting the endothelium. Br J Pharmacol 150:823–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petschnik AE et al (2009) Phenotypic indications that human sweat glands are a rich source of nestin-positive stem cell populations. Br J Dermatol 162(2):380–383

    Google Scholar 

  • Racila D, Bickenbach JR (2009) Are epidermal stem cells unique with respect to aging? Aging (Albany NY) 19(1):746–750

    Article  Google Scholar 

  • Rapini RP (2005) Practical dermatopathology. Elsevier Mosby, Philadelphia. ISBN 0-323-01198-5

    Google Scholar 

  • Rapp M. Versorgung schwerbrandverletzter Patienten mit Suprathel®. GMS doi:10.3205/11dgpw080

  • Renovo (2011) Juvista EU Phase 3 Trial Results. www.renovo.com/en/news/juvista-eu-phase-3-trial-results

  • Rockwell WB et al (1989) Keloids and Hyperthropic scars: a comprehensive review. Plast Rec Surg 84:827–837

    Article  CAS  Google Scholar 

  • Rolletschek A, Wobus AM (2009) Induced human pluripotent stem cells: promises and open questions. Biol Chem 390:845–849

    Article  CAS  PubMed  Google Scholar 

  • Schultz C et al (2008) Attenuation of monocyte proinflammatory cytokine responses to Neisseria meningitidis in children by erythropoietin. Clin Exp Immunol 154:187–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siren AL et al (2001) EPO prevents neuronal apoptosis after cerebral ischemic injury and metabolic stress. Proc Natl Acad Sci U S A 98:4044–4049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorg H et al (2009) Effects of EPO in skin wound healing are dose related. FASEB J 23:1–10

    Article  Google Scholar 

  • Takeuchi O et al (2007) Signalling pathways activated by micoorganisms. Curr Opin Cell Biol 19:185–191

    Article  CAS  PubMed  Google Scholar 

  • Viviani B et al (2005) EPO protects primary hipocamppal neurons increasing the expression of brain derived neurothropic factor. J Neurochem 93:412–421

    Article  CAS  PubMed  Google Scholar 

  • Wen TC et al (2002) EPO protects neurons against chemical hypoxia and cerebral ischemic injury by up-regulating Bcl-xL expression. J Neurosci Res 67:795–803

    Article  CAS  PubMed  Google Scholar 

  • Yazihan N et al (2008) Erythropoietin reduces lipopolysaccharide-induced cell Damage and midkine secretion in U937 human histiocytic lymphoma cells. Adv Ther 25:502–514

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks for excellent contribution in preparing the histological specimens with greatly acknowledgment to Sabine Ebert from University of Leipzig, Centre for Biotechnology and Biomedicine, Department of Applied Stem Cell Biology and Cell Techniques, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Irene Günter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Günter, C.I., Bader, A., Machens, HG. (2016). Regenerative Therapies. In: Steinhoff, G. (eds) Regenerative Medicine - from Protocol to Patient. Springer, Cham. https://doi.org/10.1007/978-3-319-28386-9_12

Download citation

Publish with us

Policies and ethics