Skip to main content

Unsupervised Evolutionary Algorithm for Dynamic Bayesian Network Structure Learning

  • Conference paper
  • First Online:
Advanced Methodologies for Bayesian Networks (AMBN 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9505))

Included in the following conference series:

Abstract

The introduction of temporal dimension makes it difficult and complex to learn dynamic Bayesian network (DBN) structure for huge search space, hence many studies focus on some particular types of DBN, such as dynamic Naive Bayesian Classifier (DNBC). In order to overcome the limited applicability of DBN structure learning methods, this paper proposes an unsupervised evolutionary algorithm in which the selection of initial population has been implemented by means of mutual information to reduce the search space. Furthermore, in view of the poor performance of traditional encoding scheme and the recount of Bayesian information criterion (BIC) score when calculating the individual fitness, we provide a new structure representation without a necessity of the acyclicity test and an updating algorithm for BIC scores with the help of family inheritance to improve the efficiency. Simulations on synthetic data demonstrate that the proposed unsupervised evolutionary algorithm is effective in DBN structure learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Heckerman, D.: Bayesian networks for data mining. Data Min. Knowl. Disc. 1, 79–119 (1997)

    Article  Google Scholar 

  2. Zhang, L., Zhang, J., Sun, Y.: The construction and application of Bayesian network in data mining. In: 6th IEEE International Conference on Information Management, Innovation Management and Industrial Engineering, pp. 501–503. IEEE Press, New York (2013)

    Google Scholar 

  3. Wachsmuth, S., Brandt-Pook, H., Socher, G., Kummert, F., Sagerer, G.: Multilevel integration of vision and speech understanding using Bayesian networks. In: Christensen, H.I. (ed.) ICVS 1999. LNCS, vol. 1542, pp. 231–254. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  4. Chickering, D.M.: Learning Bayesian networks is NP-complete. In: Fisher, D., Lenz, H. (eds.) Learning from Data. LNS, vol. 112, pp. 121–130. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  5. Xia, J., Richard, E.N., Michael, B., Shyam, V.: Learning genetic epistasis using Bayesian network scoring criteria. BMC Bioinform. 12, 1–12 (2011)

    Google Scholar 

  6. Liu, Z., Malone, B., Yuan, C.: Empirical evaluation of scoring functions for Bayesian network model selection. BMC Bioinform. S15, 14 (2012)

    Article  Google Scholar 

  7. Wang, S., Xu, G., Du, R.: Restricted Bayesian classification networks. Sc. China Inf. Sci. 56, 1–15 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Song, W., Yu, J.X., Cheng, H., Liu, H., He, J., Du, X.: Bayesian network structure learning from attribute uncertain data. In: Gao, H., Lim, L., Wang, W., Li, C., Chen, L. (eds.) WAIM 2012. LNCS, vol. 7418, pp. 314–321. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Tsamardinos, I., Brown, L.E., Aliferis, C.F.: The max-min hill-climbing Bayesian network structure learning algorithm. Mach. Learn. 65, 31–78 (2006)

    Article  MATH  Google Scholar 

  10. Wong, M.L., Leung, K.S.: An efficient data mining method for learning Bayesian networks using an evolutionary algorithm-based hybrid approach. IEEE Trans. Evol. Comput. 8, 378–404 (2004)

    Article  Google Scholar 

  11. Srinivasa, K.G., Seema, S., Jaiswal, M.: Modelling of time series microarray data using dynamic Bayesian network. Retrovirology 84, 489–492 (2009)

    Google Scholar 

  12. Shibata, K., Nakano, H., Miyauchi, A.: A learning method for dynamic Bayesian network structures using a multi-objective particle swarm optimizer. Artif. Life Robot. 16, 329–332 (2011)

    Article  Google Scholar 

  13. Shin, J., Lee, T., Kim, J., Lee, H.: Stochastic model of production and inventory control using dynamic Bayesian network. Artif. Life Robot. 13, 148–154 (2008)

    Article  Google Scholar 

  14. Palacios-Alonso, M.A., Brizuela, C.A., Sucar, L.E.: Evolutionary learning of dynamic Naive Bayesian classifiers. J. Autom. Reason. 45, 21–37 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wu, X., Wen, X., Li, J., Yao, L.: A new dynamic Bayesian network approach for determining effective connectivity from fMRI data. Neural Comput. Appl. 24, 91–97 (2014)

    Article  Google Scholar 

  16. Wei, Z., Xu, H., Li, W., Gui, X., Wu, X.: Improved Bayesian network structure learning with node ordering via K2 algorithm. In: Huang, D.-S., Jo, K.-H., Wang, L. (eds.) ICIC 2014. LNCS, vol. 8589, pp. 44–55. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  17. Wang H., Yu K., Yao H.: Learning dynamic Bayesian networks using evolutionary MCMC. In: 2nd IEEE International Conference on Computational Intelligence and Security, pp. 45–50. IEEE Press, Guangzhou (2006)

    Google Scholar 

  18. Salama, K.M., Freitas, A.A.: Learning Bayesian network classifiers using ant colony optimization. Swarm Intell. 7, 229–254 (2013)

    Article  Google Scholar 

  19. Li, J., Chen, J.: A hybrid optimization algorithm for Bayesian network structure learning based on database. J. Comput. 9, 2787–2791 (2014)

    Google Scholar 

  20. Bac, F.Q., Perov, V.L.: New evolutionary genetic algorithms for NP-complete combinatorial optimization problems. Biol. Cybern. 69, 229–234 (1993)

    Article  MATH  Google Scholar 

  21. Lee, J., Chung, W., Kim, E., Kim, S.: A new genetic approach for structure learning of Bayesian networks: matrix genetic algorithm. Int. J. Control Autom. Syst. 8, 398–407 (2010)

    Article  Google Scholar 

  22. Ross, B.J., Zuviria, E.: Evolving dynamic Bayesian networks with multi-objective genetic algorithms. Appl. Intell. 26, 13–23 (2007)

    Article  Google Scholar 

  23. Robinson, R.W.: Counting unlabeled acyclic digraphs. In: Little, C.H.C. (ed.) Combinatorial Mathematics V. LNM, vol. 622, pp. 28–43. Springer, Heidelberg (1977)

    Chapter  Google Scholar 

  24. Chen, X.W.: Improving Bayesian network structure learning with mutual information-based node ordering in the K2 algorithm. IEEE Trans. Knowl. Data Eng. 20, 628–640 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This paper was supported by the International S&T Cooperation Projects of China (2015DFR10510), the National Natural Science Foundation of China (61162010; 61440048; 61562018), and the Natural Science Foundation of Hainan Province, China (614227).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Ren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Dai, J., Ren, J. (2015). Unsupervised Evolutionary Algorithm for Dynamic Bayesian Network Structure Learning. In: Suzuki, J., Ueno, M. (eds) Advanced Methodologies for Bayesian Networks. AMBN 2015. Lecture Notes in Computer Science(), vol 9505. Springer, Cham. https://doi.org/10.1007/978-3-319-28379-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28379-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28378-4

  • Online ISBN: 978-3-319-28379-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics