Skip to main content

Phonons in Thin Oxide Films

  • Chapter
  • First Online:
Oxide Materials at the Two-Dimensional Limit

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 234))

Abstract

Thin oxide films have physical and chemical properties which may be significantly different from those of the corresponding bulk materials. For their complete characterization the information on the lattice dynamics which can be retrieved by vibrational spectroscopy is mandatory. Here we show that the number of observed phonon modes and their frequencies can indeed provide relevant information about stoichiometry, structure and thickness of the film.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Honkala K (2014) Tailoring oxide properties: an impact on adsorption characteristics of molecules and metals. Surf Sci Rep 69:366–388

    Article  Google Scholar 

  2. Freund HJ, Pacchioni G (2008) Oxide ultra-thin films on metals: new materials for the design of supported metal catalysts. Chem Soc Rev 37:2224–2242

    Article  Google Scholar 

  3. Goodman W (1995) Model studies in catalysis using surface science probes. Chem Rev 95:523–536

    Article  Google Scholar 

  4. Fuchs R, Kliewer KL (1965) Optical modes of vibration in an ionic crystal slab. Phys Rev 140:A2076–A2088

    Article  Google Scholar 

  5. Cox PA, Hill MD, Peplinskii F et al (1984) 2D surface phonons in high-resolution electron-energy-loss spectra of metallic oxides. Surf Sci 141:13–30

    Article  Google Scholar 

  6. Sachert S, Polzin S, Kostov K et al (2010) Thickness dependent vibrational and electronic properties of MnO(100) thin films grown on Pt(111). Phys Rev B 81:195424-1–195424-7

    Google Scholar 

  7. Frederick BG, Apai G, Rhodin TN (1991) Surface phonons in thin aluminum oxide films: thickness, beam-energy, and symmetry-mixing effects. Phys Rev B 44:1880–1890

    Article  Google Scholar 

  8. Lambin Ph, Senet P, Lucas AA (1991) Validity of the dielectric approximation in describing electron-energy-loss spectra of surface and interface phonons in thin films of ionic crystals. Phys Rev B 44:6416–6428

    Article  Google Scholar 

  9. Ibach H, Mills DL (1982) Electron energy loss specroscopy and surface vibrations. Academic Press, New York

    Google Scholar 

  10. Hoffmann FM (1983) Infrared reflection-absorption spectroscopy of adsorbed molecules. Surf Sci Rep 3:109–192

    Article  Google Scholar 

  11. Siebert F, Hildebrandt P (2008) Vibrational spectroscopy in life sciences. Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim. doi:10.1002/9783527621347.ch2

    Google Scholar 

  12. Xu ML, Hall BM, Tong SY et al (1985) Energy dependence of inelastic electron scattering cross section by surface vibrations: experimental measurement and theoretical interpretation. Phys Rev Lett 54:1171–1174

    Article  Google Scholar 

  13. Rocca M, Ibach H, Lehwald S et al (1986) Surface phonon dispersion of surface and adsorbate layers. In: Von Blanckenhagen P, Schommers W (eds) Structure and dynamics of surfaces. Topics in current physics, vol 41. Springer, Berlin, pp 245–276

    Google Scholar 

  14. Agarwal SK (1979) Lattice-dynamics of transition metal oxides MnO and NiO. Solid State Comm 29:197–200

    Article  Google Scholar 

  15. Rudolf T, Kant Ch, Mayr F et al (2008) Magnetic-order induced phonon splitting in MnO from far-infrared spectroscopy. Phys Rev B 77:024421-1–024421-5)

    Google Scholar 

  16. Savio L, Celasco E, Vattuone L et al (2003) MgO/Ag(100): confined vibrational modes in the limit of ultrathin films. Phys Rev B 67:075420-1–075420-5

    Google Scholar 

  17. Pal J, Smerieri M, Celasco E et al (2014) Morphology of monolayer MgO films on Ag(100): switching from corrugated islands to extended flat terraces. Phys Rev Lett 112:126102-1–126102-5

    Google Scholar 

  18. Pal J, Smerieri M, Celasco E et al (2014) How growing conditions and interfacial oxygen affect the final morphology of MgO/Ag(100) films. J Phys Chem C 118:26091–26102

    Article  Google Scholar 

  19. Hwang Y, Souda E, Aizawa T et al (1997) Surface phonon of MgO layer on TiC(100) surface. Jpn J Appl Phys 36:5707–5708

    Article  Google Scholar 

  20. Schoiswohl J, Agnoli S, Xu B et al (2005) Growth and thermal behaviour of NiO nanolayers on Pd(1 0 0). Surf Sci 599:1–13

    Article  Google Scholar 

  21. Tyuliev GT, Kostov KL (1999) XPS/HREELS study of NiO films grown on Ni(111). Phys Rev B 60:2900–2907

    Article  Google Scholar 

  22. Cox PA, Williams AA (1985) The observation of surface optical phonons and low-energy electronic transitions in NiO single crystals by electron energy loss spectroscopy. Surf Sci 152(153):791–796

    Article  Google Scholar 

  23. Le Moal S, Moors M, Essen JM et al (2013) Structural and compositional characterization of ultrathin titanium oxide films grown on Pt3Ti(111). J Phys Cond Matt 25:045013-(1–11)

    Google Scholar 

  24. Langell MA, Hutchings CW, Carson GA et al (1996) High resolution electron energy loss spectroscopy of MnO(100) and oxidized MnO(100). J Vac Sci Technol A 14:1656–1661

    Article  Google Scholar 

  25. Wulser KW, Langell MA (1994) Fuchs-Kliewer phonon structure and surface integrity of NiO(100). Surf Sci 314:385–397

    Article  Google Scholar 

  26. Carson GA, Nassir MH, Langell MA (1996) Epitaxial growth of Co3O4 on CoO(100). J Vac SciTechnol A 14:1637–1642

    Article  Google Scholar 

  27. Guo Q, Oh WS, Goodman DW (1999) Titanium oxide films grown on Mo(110). Surf Sci 437:49–60

    Article  Google Scholar 

  28. Henderson MA (1996) An HREELS and TPD study of water on TiO2(110): the extent of molecular versus dissociative adsorption. Surf Sci 355:151–166

    Article  Google Scholar 

  29. Gunrick G, Poelman H, Clauws P et al (1991) Observation of surface phonons on the (001) and (100) surfaces of anatase minerals. Solid State Comm 80:579–581

    Article  Google Scholar 

  30. Chen MS, Santra AK, Goodman DW (2004) Structure of thin SiO2 films grown on Mo(112). Phys Rev B 69:155404-1–155404-7)

    Google Scholar 

  31. Wendt S, Ozensoy E, Wei T et al (2005) Electronic and vibrational properties of ultrathin SiO2 films grown on Mo(112). Phys Rev B 72:115409-1–115409-9

    Google Scholar 

  32. Kaya S, Baron M, Stacchiola D et al (2007) On the geometrical and electronic structure of an ultra-thin crystalline silica film grown on Mo(1 1 2). Surf Sci 601:4849–4861

    Article  Google Scholar 

  33. Schroeder T, Giorgi JB, Bäumer M et al (2002) Morphological and electronic properties of ultrathin crystalline silica epilayers on a Mo(112) substrate. Phys Rev B 66:165422-1–165422-11

    Google Scholar 

  34. Lu JL, Kaya S, Weissenrieder J et al (2006) Formation of one-dimensional crystalline silica on a metal substrate. Surf Sci 600:L164–L168

    Article  Google Scholar 

  35. Frank M, Wolter K, Magg N et al (2001) Phonons of clean and metal-modified oxide films: an infrared and HREELS study. Surf Sci 492:270–284

    Article  Google Scholar 

  36. Berreman DW (1963) Infrared absorption at longitudinal optic frequency in cubic crystal films. Phys Rev 130:2193–2198

    Article  Google Scholar 

  37. Franchy R (2000) Growth of thin, crystalline oxide, nitride and oxynitride films on metal and metal alloy surfaces. Surf Sci Rep 38:195–294

    Article  Google Scholar 

  38. Strong RL, Firey B, de Wette FW et al (1982) Surface-site determination using electron-energy-loss spectroscopy and lattice-dynamical models. Phys Rev B 26:3483(R)-3486 and its Erratum Phys Rev B 27:3896

    Article  Google Scholar 

  39. Lee MB, Lee JH, Frederick BG et al (2000) Surface structure of ultra-thin Al2O3 films on metal substrates. Surf Sci 448:L207–L212

    Article  Google Scholar 

  40. Franchy R, Masuch J, Gassmann P (1996) The oxidation of the NiAl(111) surface. App Surf Sci 93:317–327

    Article  Google Scholar 

  41. Gassmann P, Franchy R, Ibach H (1994) Investigations on phase transitions within thin Al2O3 layers on NiAl(001) HREELS on aluminum oxide films. Surf Sci 319:95–109

    Article  Google Scholar 

  42. Pfuner F, Schoiswohl J, Sock M et al (2005) The metalinsulator transition in V2O3(0001) thin films: surface termination effects. J Phys Cond Matt 17:4035–4047

    Article  Google Scholar 

  43. Guo K, Lee S, Goodman DW (1999) Vanadium oxides thin films grown on rutile TiO2(110)-(1 1)and(1 × 2) surfaces. Surf Sci 437:38–48

    Article  Google Scholar 

  44. Artiglia L, Agnoli S, Savio L et al (2014) From Vanadia nanoclusters to ultrathin films on TiO2(110): evolution of the yield and selectivity in the ethanol oxidation reaction. ACS Catal 4:3715–3723

    Article  Google Scholar 

  45. Kresse G, Surnev S, Schoiswohl J et al (2004) V2O3(0001) surface terminations: a density functional study. Surf Sci 555:118–134

    Article  Google Scholar 

  46. Surnev S, Kresse G, Sock M et al (2001) Surface structures of ultrathin vanadium oxide films on Pd(1 1 1. Surf Sci 495:91–106

    Article  Google Scholar 

  47. Schmitz G, Gassmann P, Franchy R (1998) A combined scanning tunneling microscopy and electron energy loss spectroscopy study on the formation of thin, well-ordered β-Ga2O3 films on CoGa(001). J Appl Phys 83:2533–2538

    Article  Google Scholar 

  48. Breinlich C, Essen JM, Barletta E et al (2011) Growth, structure and electronic properties of ultrathin cerium oxide films grown on Pt(111). Thin Solid Films 519:3752–3755

    Article  Google Scholar 

  49. Wolter K, Scarano D, Fritsch J et al (2000) Observation of a localized surface phonon on an oxide surface. Chem Phys Lett 320:206–211

    Article  Google Scholar 

  50. Renneke DR, Lynch DW (1965) Infrared lattice vibrations and dielectric dispersion in single-crystal Cr2O3. Phys Rev 138:A530–A533

    Article  Google Scholar 

  51. Ding J, Zhang D, Arita M et al (2011) Growth and characterization of Fe3O4 films. Mat Res Bull 46:2212–2216

    Article  Google Scholar 

  52. Lübbe M, Gigler A, Stark R et al (2010) Identification of iron oxide phases in thin films grown on Al2O3(0001) by Raman spectroscopy and X-ray diffraction. Surf Sci 604:679–685

    Article  Google Scholar 

  53. Zhang L, Tang Z, Wang S et al (2012) Growth and vibrational properties of MnOx thin films on Rh(111). Surf Sci 606:1507–1511

    Article  Google Scholar 

  54. Xie L, Wang D, Zhong C et al (1994) The preparation of and water adsorption on thin films of niobium oxide on Pt(111). Surf Sci 320:62–76

    Article  Google Scholar 

  55. Denk M, Kuhness D, Wagner M et al (2014) Metal tungstates at the ultimate two-dimensional limit: fabrication of a CuWO4 nanophase. AcsNano 8:3947–3954

    Google Scholar 

  56. Förster S, Meinel K, Hammer R et al (2013) Quasicrystalline structure formation in a classical crystalline thin-film system. Nature 502:215–218

    Article  Google Scholar 

  57. Widdra W, Schumann F, Christl M et al (2015) Surface phonons and ferroelectric coupling in ultrathin perovskite oxides. ECOSS 31 Book of abstract, 129, available at: http://www.ecoss2015.org

Download references

Acknowledgements

We thank Compagnia San Paolo for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Vattuone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vattuone, L., Savio, L., Rocca, M. (2016). Phonons in Thin Oxide Films. In: Netzer, F., Fortunelli, A. (eds) Oxide Materials at the Two-Dimensional Limit. Springer Series in Materials Science, vol 234. Springer, Cham. https://doi.org/10.1007/978-3-319-28332-6_6

Download citation

Publish with us

Policies and ethics