Skip to main content

Rotational Thromboelastometry (ROTEM®)

  • Chapter
  • First Online:
Trauma Induced Coagulopathy

Abstract

Thromboelastometry (ROTEM®) is an advancement of the classical thromboelastography. Several technical enhancements made the device more robust and user-friendly, reduced intra- and inter-operator variability, and improved the diagnostic performance. This allows for using the device at the bedside in a mobile way and in a multiuser environment, even in military settings. The ROTEM® device is not only able to detect multiple aspects of trauma-induced coagulopathy (TIC) and disseminated intravascular coagulation (DIC), but it allows for prediction of bleeding, massive transfusion, thrombosis, and mortality, too. Furthermore, the ROTEM® device is designed to guide hemostatic therapy with allogeneic blood products (RBC, FFP, cryoprecipitate, and platelets) and in particular with specific coagulation factor concentrates (fibrinogen concentrate, prothrombin complex concentrate (PCC), factor XIII concentrate, and rFVIIa). Here, the combination of specific ROTEM® assays improved the diagnostic performance, significantly. Finally, the implementation of ROTEM®-guided bleeding management algorithms (“Theragnostic Approach”) has been shown to reduce transfusion requirements, complication rates, morbidity, mortality, and hospital costs in trauma and other clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hartert H. Blutgerinnungsstudien mit der Thrombe-lastographie, einem neuen Untersuchungsverfahren. Klin Wschr. 1948;26(37/38):577–83.

    Google Scholar 

  2. Calatzis A, Fritzsche P, Calatzis A, Kling M, Hipp R, Sternberger A. A comparison of the technical principle of the ROTEG coagulation analyser and conventional thrombelastographic systems. Ann Hematol. 1996;72(1 Suppl):P90.

    Google Scholar 

  3. Mauch J, Spielmann N, Hartnack S, Madjdpour C, Kutter AP, Bettschart-Wolfensberger R, Weiss M, Haas T. Intrarater and interrater variability of point of care coagulation testing using the ROTEM delta. Blood Coagul Fibrinolysis. 2011;22(8):662–6. doi:10.1097/MBC.0b013e32834aa806.

    Article  PubMed  Google Scholar 

  4. Haas T, Spielmann N, Mauch J, Speer O, Schmugge M, Weiss M. Reproducibility of thrombelastometry (ROTEM®): point-of-care versus hospital laboratory performance. Scand J Clin Lab Invest. 2012;72(4):313–7. doi:10.3109/00365513.2012.665474.

    Article  PubMed  Google Scholar 

  5. Anderson L, Quasim I, Steven M, Moise SF, Shelley B, Schraag S, Sinclair A. Interoperator and intraoperator variability of whole blood coagulation assays: a comparison of thromboelastography and rotational thromboelastometry. J Cardiothorac Vasc Anesth. 2014. pii:S1053-0770(14)00254-7. doi:10.1053/j.jvca.2014.05.023 [Epub ahead of print].

  6. Larsen OH, Fenger-Eriksen C, Christiansen K, Ingerslev J, Sørensen B. Diagnostic performance and therapeutic consequence of thromboelastometry activated by kaolin versus a panel of specific reagents. Anesthesiology. 2011;115(2):294–302. doi:10.1097/ALN.0b013e318220755c.

    Article  CAS  PubMed  Google Scholar 

  7. Doran CM, Woolley T, Midwinter MJ. Feasibility of using rotational thromboelastometry to assess coagulation status of combat casualties in a deployed setting. J Trauma. 2010;69 Suppl 1:S40–8. doi:10.1097/TA.0b013e3181e4257b.

    Article  PubMed  Google Scholar 

  8. Tarmey NT, Woolley T, Jansen JO, Doran CM, Easby D, Wood PR, Midwinter MJ. Evolution of coagulopathy monitoring in military damage-control resuscitation. J Trauma Acute Care Surg. 2012;73(6 Suppl 5):S417–22. doi:10.1097/TA.0b013e31827546c0.

    Article  PubMed  Google Scholar 

  9. Woolley T, Midwinter M, Spencer P, Watts S, Doran C, Kirkman E. Utility of interim ROTEM® values of clot strength, A5 and A10, in predicting final assessment of coagulation status in severely injured battle patients. Injury. 2013;44(5):593–9. doi:10.1016/j.injury.2012.03.018.

    Article  CAS  PubMed  Google Scholar 

  10. Keene DD, Nordmann GR, Woolley T. Rotational thromboelastometry-guided trauma resuscitation. Curr Opin Crit Care. 2013;19(6):605–12. doi:10.1097/MCC.0000000000000021.

    PubMed  Google Scholar 

  11. Benson G. Rotational thromboelastometry and its use in directing the management of coagulopathy in the battle injured trauma patient. J Perioper Pract. 2014;24(1–2):25–8.

    CAS  PubMed  Google Scholar 

  12. Modesti PA, Rapi S, Paniccia R, Bilo G, Revera M, Agostoni P, Piperno A, Cambi GE, Rogolino A, Biggeri A, Mancia G, Gensini GF, Abbate R, Parati G. Index measured at an intermediate altitude to predict impending acute mountain sickness. Med Sci Sports Exerc. 2011;43(10):1811–8. doi:10.1249/MSS.0b013e31821b55df.

    Article  PubMed  Google Scholar 

  13. Rahe-Meyer N, Solomon C, Vorweg M, Becker S, Stenger K, Winterhalter M, Lang T. Multicentric comparison of single portion reagents and liquid reagents for thromboelastometry. Blood Coagul Fibrinolysis. 2009;20(3):218–22. doi:10.1097/MBC.0b013e328327355d.

    Article  PubMed  Google Scholar 

  14. Ostrowski SR, Johansson PI. Endothelial glycocalyx degradation induces endogenous heparinization in patients with severe injury and early traumatic coagulopathy. J Trauma Acute Care Surg. 2012;73(1):60–6. doi:10.1097/TA.0b013e31825b5c10.

    Article  CAS  PubMed  Google Scholar 

  15. Lang T, Toller W, Gütl M, Mahla E, Metzler H, Rehak P, März W, Halwachs-Baumann G. Different effects of abciximab and cytochalasin D on clot strength in thrombelastography. J Thromb Haemost. 2004;2(1):147–53.

    Article  CAS  PubMed  Google Scholar 

  16. Schlimp CJ, Solomon C, Ranucci M, Hochleitner G, Redl H, Schöchl H. The effectiveness of different functional fibrinogen polymerization assays in eliminating platelet contribution to clot strength in thromboelastometry. Anesth Analg. 2014;118(2):269–76. doi:10.1213/ANE.0000000000000058.

    Article  CAS  PubMed  Google Scholar 

  17. Olde Engberink RH, Kuiper GJ, Wetzels RJ, Nelemans PJ, Lance MD, Beckers EA, Henskens YM. Rapid and correct prediction of thrombocytopenia and hypofibrinogenemia with rotational thromboelastometry in cardiac surgery. J Cardiothorac Vasc Anesth. 2014;28(2):210–6. doi:10.1053/j.jvca.2013.12.004.

    Article  PubMed  Google Scholar 

  18. Gronchi F, Perret A, Ferrari E, Marcucci CM, Flèche J, Crosset M, Schoettker P, Marcucci C. Validation of rotational thromboelastometry during cardiopulmonary bypass: a prospective, observational in-vivo study. Eur J Anaesthesiol. 2014;31(2):68–75. doi:10.1097/EJA.0b013e328363171a.

    Article  CAS  PubMed  Google Scholar 

  19. Sucker C, Zotz RB, Görlinger K, Hartmann M. Rotational thrombelastometry for the bedside monitoring of recombinant hirudin. Acta Anaesthesiol Scand. 2008;52(3):358–62. doi:10.1111/j.1399-6576.2007.01550.x.

    Article  CAS  PubMed  Google Scholar 

  20. Schaden E, Schober A, Hacker S, Kozek-Langenecker S. Ecarin modified rotational thrombelastometry: a point-of-care applicable alternative to monitor the direct thrombin inhibitor argatroban. Wien Klin Wochenschr. 2013;125(5–6):156–9. doi:10.1007/s00508-013-0327-1.

    Article  CAS  PubMed  Google Scholar 

  21. Adamzik M, Eggmann M, Frey UH, Görlinger K, Bröcker-Preuss M, Marggraf G, Saner F, Eggebrecht H, Peters J, Hartmann M. Comparison of thromboelastometry with procalcitonin, interleukin 6, and C-reactive protein as diagnostic tests for severe sepsis in critically ill adults. Crit Care. 2010;14(5):R178. doi:10.1186/cc9284.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Görlinger K, Bergmann L, Dirkmann D. Coagulation management in patients undergoing mechanical circulatory support. Best Pract Res Clin Anaesthesiol. 2012;26(2):179–98. doi:10.1016/j.bpa.2012.04.003.

    Article  PubMed  Google Scholar 

  23. Adamzik M, Schäfer S, Frey UH, Becker A, Kreuzer M, Winning S, Frede S, Steinmann J, Fandrey J, Zacharowski K, Siffert W, Peters J, Hartmann M. The NFKB1 promoter polymorphism (-94ins/delATTG) alters nuclear translocation of NF-κB1 in monocytes after lipopolysaccharide stimulation and is associated with increased mortality in sepsis. Anesthesiology. 2013;118(1):123–33. doi:10.1097/ALN.0b013e318277a652.

    Article  CAS  PubMed  Google Scholar 

  24. Müller MC, Meijers JC, Vroom MB, Juffermans NP. Utility of thromboelastography and/or thromboelastometry in adults with sepsis: a systematic review. Crit Care. 2014;18(1):R30. doi:10.1186/cc13721.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sørensen B, Johansen P, Christiansen K, Woelke M, Ingerslev J. Whole blood coagulation thrombelastographic profiles employing minimal tissue factor activation. J Thromb Haemost. 2003;1(3):551–8.

    Article  PubMed  Google Scholar 

  26. Lang T, von Depka M. Possibilities and limitations of thrombelastometry-graphy. Hamostaseologie. 2006;26(3 Suppl 1):S20–9.

    CAS  PubMed  Google Scholar 

  27. Görlinger K, Jambor C, Hanke AA, Dirkmann D, Adamzik M, Hartmann M, Rahe-Meyer N. Perioperative coagulation management and control of platelet transfusion by point-of-care platelet function analysis. Transfus Med Hemother. 2007;34(6):396–411. doi:10.1159/000109642.

    Article  Google Scholar 

  28. Tem Innnovations GmbH. ROTEM® delta Manual 2.2.0.01. EN 2012.

    Google Scholar 

  29. Lang T, Bauters A, Braun SL, Pötzsch B, von Pape KW, Kolde HJ, Lakner M. Multi-centre investigation on reference ranges for ROTEM thromboelastometry. Blood Coagul Fibrinolysis. 2005;16(4):301–10.

    Article  PubMed  Google Scholar 

  30. Haizinger B, Gombotz H, Rehak P, Geiselseder G, Mair R. Activated thrombelastogram in neonates and infants with complex congenital heart disease in comparison with healthy children. Br J Anaesth. 2006;97(4):545–52.

    Article  CAS  PubMed  Google Scholar 

  31. Oswald E, Stalzer B, Heitz E, Weiss M, Schmugge M, Strasak A, Innerhofer P, Haas T. Thromboelastometry (ROTEM) in children: age-related reference ranges and correlations with standard coagulation tests. Br J Anaesth. 2010;105(6):827–35. doi:10.1093/bja/aeq258.

    Article  CAS  PubMed  Google Scholar 

  32. Huissoud C, Carrabin N, Benchaib M, Fontaine O, Levrat A, Massignon D, Touzet S, Rudigoz RC, Berland M. Coagulation assessment by rotation thrombelastometry in normal pregnancy. Thromb Haemost. 2009;101(4):755–61.

    CAS  PubMed  Google Scholar 

  33. Oudghiri M, Keita H, Kouamou E, Boutonnet M, Orsini M, Desconclois C, Mandelbrot L, Daures JP, Stépanian A, Peynaud-Debayle E, de Prost D. Reference values for rotation thromboelastometry (ROTEM®) parameters following non-haemorrhagic deliveries. Correlations with standard haemostasis parameters. Thromb Haemost. 2011;106(1):176–8. doi:10.1160/TH11-02-0058.

    Article  CAS  PubMed  Google Scholar 

  34. de Lange NM, van Rheenen-Flach LE, Lancé MD, Mooyman L, Woiski M, van Pampus EC, Porath M, Bolte AC, Smits L, Henskens YM, Scheepers HC. Peri-partum reference ranges for ROTEM(R) thromboelastometry. Br J Anaesth. 2014;112(5):852–9. doi:10.1093/bja/aet480.

    Article  PubMed  Google Scholar 

  35. Dirkmann D, Görlinger K, Dusse F, Kottenberg E, Peters J. Early thromboelastometric variables reliably predict maximum clot firmness in patients undergoing cardiac surgery: a step towards earlier decision making. Acta Anaesthesiol Scand. 2013;57(5):594–603. doi:10.1111/aas.12040.

    Article  CAS  PubMed  Google Scholar 

  36. Görlinger K, Dirkmann D, Solomon C, Hanke AA. Fast interpretation of thromboelastometry in non-cardiac surgery: reliability in patients with hypo-, normo-, and hypercoagulability. Br J Anaesth. 2013;110(2):222–30. doi:10.1093/bja/aes374.

    Article  PubMed  Google Scholar 

  37. Song JG, Jeong SM, Jun IG, Lee HM, Hwang GS. Five-minute parameter of thromboelastometry is sufficient to detect thrombocytopenia and hypofibrinogenaemia in patients undergoing liver transplantation. Br J Anaesth. 2014;112(2):290–7. doi:10.1093/bja/aet325.

    Article  CAS  PubMed  Google Scholar 

  38. Rourke C, Curry N, Khan S, Taylor R, Raza I, Davenport R, Stanworth S, Brohi K. Fibrinogen levels during trauma hemorrhage, response to replacement therapy, and association with patient outcomes. J Thromb Haemost. 2012;10(7):1342–51. doi:10.1111/j.1538-7836.2012.04752.x.

    Article  CAS  PubMed  Google Scholar 

  39. Meyer AS, Meyer MA, Sørensen AM, Rasmussen LS, Hansen MB, Holcomb JB, Cotton BA, Wade CE, Ostrowski SR, Johansson PI. Thrombelastography and rotational thromboelastometry early amplitudes in 182 trauma patients with clinical suspicion of severe injury. J Trauma Acute Care Surg. 2014;76(3):682–90. doi:10.1097/TA.0000000000000134.

    Article  PubMed  Google Scholar 

  40. Dirkmann D, Görlinger K, Peters J. Assessment of early thromboelastometric variables from extrinsically activated assays with and without aprotinin for rapid detection of fibrinolysis. Anesth Analg. 2014;119(3):533–42. doi:10.1213/ANE.0000000000000333.

    Article  CAS  PubMed  Google Scholar 

  41. Davenport R, Manson J, De'Ath H, Platton S, Coates A, Allard S, Hart D, Pearse R, Pasi KJ, MacCallum P, Stanworth S, Brohi K. Functional definition and characterization of acute traumatic coagulopathy. Crit Care Med. 2011;39(12):2652–8. doi:10.1097/CCM.0b013e3182281af5.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Dekker SE, Viersen VA, Duvekot A, de Jong M, van den Brom CE, van de Ven PM, Schober P, Boer C. Lysis onset time as diagnostic rotational thromboelastometry parameter for fast detection of hyperfibrinolysis. Anesthesiology. 2014;121(1):89–97. doi:10.1097/ALN.0000000000000229.

    Article  CAS  PubMed  Google Scholar 

  43. Kalantzi KI, Tsoumani ME, Goudevenos IA, Tselepis AD. Pharmacodynamic properties of antiplatelet agents: current knowledge and future perspectives. Expert Rev Clin Pharmacol. 2012;5(3):319–36. doi:10.1586/ecp.12.19.

    Article  CAS  PubMed  Google Scholar 

  44. Tóth O, Calatzis A, Penz S, Losonczy H, Siess W. Multiple electrode aggregometry: a new device to measure platelet aggregation in whole blood. Thromb Haemost. 2006;96(6):781–8.

    PubMed  Google Scholar 

  45. Jámbor C, Weber CF, Gerhardt K, Dietrich W, Spannagl M, Heindl B, Zwissler B. Whole blood multiple electrode aggregometry is a reliable point-of-care test of aspirin-induced platelet dysfunction. Anesth Analg. 2009;109(1):25–31. doi:10.1213/ane.0b013e3181a27d10.

    Article  PubMed  CAS  Google Scholar 

  46. Penz SM, Bernlochner I, Tóth O, Lorenz R, Calatzis A, Siess W. Selective and rapid monitoring of dual platelet inhibition by aspirin and P2Y12 antagonists by using multiple electrode aggregometry. Thromb J. 2010;8:9. doi:10.1186/1477-9560-8-9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Krüger JC, Meves SH, Kara K, Mügge A, Neubauer H. Monitoring ASA and P2Y12-specific platelet inhibition—comparison of conventional (single) and multiple electrode aggregometry. Scand J Clin Lab Invest. 2014;74(7):568–74. doi:10.3109/00365513.2014.913305.

    Article  PubMed  CAS  Google Scholar 

  48. Sibbing D, Braun S, Morath T, Mehilli J, Vogt W, Schömig A, Kastrati A, von Beckerath N. Platelet reactivity after clopidogrel treatment assessed with point-of-care analysis and early drug-eluting stent thrombosis. J Am Coll Cardiol. 2009;53(10):849–56. doi:10.1016/j.jacc.2008.11.030.

    Article  CAS  PubMed  Google Scholar 

  49. Sibbing D, Schulz S, Braun S, Morath T, Stegherr J, Mehilli J, Schömig A, von Beckerath N, Kastrati A. Antiplatelet effects of clopidogrel and bleeding in patients undergoing coronary stent placement. J Thromb Haemost. 2010;8(2):250–6. doi:10.1111/j.1538-7836.2009.03709.x.

    Article  CAS  PubMed  Google Scholar 

  50. Siller-Matula JM, Christ G, Lang IM, Delle-Karth G, Huber K, Jilma B. Multiple electrode aggregometry predicts stent thrombosis better than the vasodilator-stimulated phosphoprotein phosphorylation assay. J Thromb Haemost. 2010;8(2):351–9. doi:10.1111/j.1538-7836.2009.03699.x.

    Article  CAS  PubMed  Google Scholar 

  51. Rahe-Meyer N, Winterhalter M, Boden A, Froemke C, Piepenbrock S, Calatzis A, Solomon C. Platelet concentrates transfusion in cardiac surgery and platelet function assessment by multiple electrode aggregometry. Acta Anaesthesiol Scand. 2009;53(2):168–75. doi:10.1111/j.1399-6576.2008.01845.x.

    Article  CAS  PubMed  Google Scholar 

  52. Ranucci M, Baryshnikova E, Soro G, Ballotta A, De Benedetti D, Conti D. Surgical and Clinical Outcome Research (SCORE) Group. Multiple electrode whole-blood aggregometry and bleeding in cardiac surgery patients receiving thienopyridines. Ann Thorac Surg. 2011;91(1):123–9. doi:10.1016/j.athoracsur.2010.09.022.

    Article  PubMed  Google Scholar 

  53. Petricević M, Biocina B, Konosić S, Burcar I, Sirić F, Mihaljević MZ, Ivancan V, Svetina L, Gasparović H. Definition of acetylsalicylic acid resistance using whole blood impedance aggregometry in patients undergoing coronary artery surgery. Coll Antropol. 2013;37(3):833–9.

    PubMed  Google Scholar 

  54. Schimmer C, Hamouda K, Sommer SP, Özkur M, Hain J, Leyh R. The predictive value of multiple electrode platelet aggregometry (multiplate) in adult cardiac surgery. Thorac Cardiovasc Surg. 2013;61(8):733–43. doi:10.1055/s-0033-1333659. Epub 2013 Feb 18.

    Article  PubMed  Google Scholar 

  55. Ranucci M, Colella D, Baryshnikova E, Di Dedda U; for the Surgical and Clinical Outcome Research (SCORE) Group. Effect of preoperative P2Y12 and thrombin platelet receptor inhibition on bleeding after cardiac surgery. Br J Anaesth. 2014 Sep 10. pii:aeu315 [Epub ahead of print].

    Google Scholar 

  56. Solomon C, Traintinger S, Ziegler B, Hanke A, Rahe-Meyer N, Voelckel W, Schöchl H. Platelet function following trauma. A multiple electrode aggregometry study. Thromb Haemost. 2011;106(2):322–30. doi:10.1160/TH11-03-0175.

    Article  CAS  PubMed  Google Scholar 

  57. Adamzik M, Görlinger K, Peters J, Hartmann M. Whole blood impedance aggregometry as a biomarker for the diagnosis and prognosis of severe sepsis. Crit Care. 2012;16(5):R204. doi:10.1186/cc11816.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kutcher ME, Redick BJ, McCreery RC, Crane IM, Greenberg MD, Cachola LM, Nelson MF, Cohen MJ. Characterization of platelet dysfunction after trauma. J Trauma Acute Care Surg. 2012;73(1):13–9. doi:10.1097/TA.0b013e318256deab.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hanke AA, Dellweg C, Kienbaum P, Weber CF, Görlinger K, Rahe-Meyer N. Effects of desmopressin on platelet function under conditions of hypothermia and acidosis: an in vitro study using multiple electrode aggregometry. Anaesthesia. 2010;65(7):688–91. doi:10.1111/j.1365-2044.2010.06367.x.

    Article  CAS  PubMed  Google Scholar 

  60. Weber CF, Dietrich W, Spannagl M, Hofstetter C, Jámbor C. A point-of-care assessment of the effects of desmopressin on impaired platelet function using multiple electrode whole-blood aggregometry in patients after cardiac surgery. Anesth Analg. 2010;110(3):702–7. doi:10.1213/ANE.0b013e3181c92a5c.

    Article  CAS  PubMed  Google Scholar 

  61. Weber CF, Görlinger K, Byhahn C, Moritz A, Hanke AA, Zacharowski K, Meininger D. Tranexamic acid partially improves platelet function in patients treated with dual antiplatelet therapy. Eur J Anaesthesiol. 2011;28(1):57–62. doi:10.1097/EJA.0b013e32834050ab.

    Article  PubMed  Google Scholar 

  62. Grewal PK, Uchiyama S, Ditto D, Varki N, Le DT, Nizet V, Marth JD. The Ashwell receptor mitigates the lethal coagulopathy of sepsis. Nat Med. 2008;14(6):648–55. doi:10.1038/nm1760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Harr JN, Moore EE, Wohlauer MV, Fragoso M, Gamboni F, Liang X, Banerjee A, Silliman CC. Activated platelets in heparinized shed blood: the “second hit” of acute lung injury in trauma/hemorrhagic shock models. Shock. 2011;36(6):595–603. doi:10.1097/SHK.0b013e318231ee76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Harr JN, Moore EE, Johnson J, Chin TL, Wohlauer MV, Maier R, Cuschieri J, Sperry J, Banerjee A, Silliman CC, Sauaia A. Antiplatelet therapy is associated with decreased transfusion-associated risk of lung dysfunction, multiple organ failure, and mortality in trauma patients. Crit Care Med. 2013;41(2):399–404. doi:10.1097/CCM.0b013e31826ab38b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Batchelor JS, Grayson A. A meta-analysis to determine the effect of preinjury antiplatelet agents on mortality in patients with blunt head trauma. Br J Neurosurg. 2013;27(1):12–8. doi:10.3109/02688697.2012.705361.

    Article  PubMed  Google Scholar 

  66. Hallet J, Lauzier F, Mailloux O, Trottier V, Archambault P, Zarychanski R, Turgeon AF. The use of higher platelet: RBC transfusion ratio in the acute phase of trauma resuscitation: a systematic review. Crit Care Med. 2013;41(12):2800–11. doi:10.1097/CCM.0b013e31829a6ecb.

    Article  PubMed  Google Scholar 

  67. Briggs A, Gates JD, Kaufman RM, Calahan C, Gormley WB, Havens JM. Platelet dysfunction and platelet transfusion in traumatic brain injury. J Surg Res. 2014 Aug 13. pii:S0022-4804(14)00783-5. doi:10.1016/j.jss.2014.08.016 [Epub ahead of print].

  68. Inaba K, Branco BC, Rhee P, Blackbourne LH, Holcomb JB, Teixeira PG, Shulman I, Nelson J, Demetriades D. Impact of plasma transfusion in trauma patients who do not require massive transfusion. J Am Coll Surg. 2010;210(6):957–65. doi:10.1016/j.jamcollsurg.2010.01.031.

    Article  PubMed  Google Scholar 

  69. Borgman MA, Spinella PC, Holcomb JB, Blackbourne LH, Wade CE, Lefering R, Bouillon B, Maegele M. The effect of FFP:RBC ratio on morbidity and mortality in trauma patients based on transfusion prediction score. Vox Sang. 2011;101(1):44–54. doi:10.1111/j.1423-0410.2011.01466.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mitra B, Cameron PA, Gruen RL. Aggressive fresh frozen plasma (FFP) with massive blood transfusion in the absence of acute traumatic coagulopathy. Injury. 2012;43(1):33–7. doi:10.1016/j.injury.2011.10.011.

    Article  PubMed  Google Scholar 

  71. Holcomb JB, Gumbert S. Potential value of protocols in substantially bleeding trauma patients. Curr Opin Anaesthesiol. 2013;26(2):215–20. doi:10.1097/ACO.0b013e32835e8c9b.

    Article  PubMed  Google Scholar 

  72. Theusinger OM, Stein P, Spahn DR. Transfusion strategy in multiple trauma patients. Curr Opin Crit Care. 2014 Oct 13 [Epub ahead of print].

    Google Scholar 

  73. Brockamp T, Nienaber U, Mutschler M, Wafaisade A, Peiniger S, Lefering R, Bouillon B, Maegele M, TraumaRegister DGU. Predicting on-going hemorrhage and transfusion requirement after severe trauma: a validation of six scoring systems and algorithms on the TraumaRegister DGU. Crit Care. 2012;16(4):R129. doi:10.1186/cc11432.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Maegele M, Brockamp T, Nienaber U, Probst C, Schoechl H, Görlinger K, Spinella P. Predictive models and algorithms for the need of transfusion including massive transfusion in severely injured patients. Transfus Med Hemother. 2012;39(2):85–97.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Mutschler M, Brockamp T, Wafaisade A, Lipensky A, Probst C, Bouillon B, Maegele M. ‘Time to TASH’: how long does complete score calculation take to assess major trauma hemorrhage? Transfus Med. 2014;24(1):58–9. doi:10.1111/tme.12089.

    Article  PubMed  Google Scholar 

  76. Leemann H, Lustenberger T, Talving P, Kobayashi L, Bukur M, Brenni M, Brüesch M, Spahn DR, Keel MJ. The role of rotation thromboelastometry in early prediction of massive transfusion. J Trauma. 2010;69(6):1403–8. doi:10.1097/TA.0b013e3181faaa25. discussion 1408–9.

    Article  PubMed  Google Scholar 

  77. Schöchl H, Cotton B, Inaba K, Nienaber U, Fischer H, Voelckel W, Solomon C. FIBTEM provides early prediction of massive transfusion in trauma. Crit Care. 2011;15(6):R265. doi:10.1186/cc10539.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Tauber H, Innerhofer P, Breitkopf R, Westermann I, Beer R, El Attal R, Strasak A, Mittermayr M. Prevalence and impact of abnormal ROTEM(R) assays in severe blunt trauma: results of the ‘Diagnosis and Treatment of Trauma-Induced Coagulopathy (DIA-TRE-TIC) study’. Br J Anaesth. 2011;107(3):378–87. doi:10.1093/bja/aer158.

    Article  CAS  PubMed  Google Scholar 

  79. Shakur H, Roberts I, Bautista R, Caballero J, Coats T, Dewan Y, El-Sayed H, Gogichaishvili T, Gupta S, Herrera J, Hunt B, Iribhogbe P, Izurieta M, Khamis H, Komolafe E, Marrero MA, Mejía-Mantilla J, Miranda J, Morales C, Olaomi O, Olldashi F, Perel P, Peto R, Ramana PV, Ravi RR, Yutthakasemsunt S, CRASH-2 trial collaborators. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet. 2010;376(9734):23–32. doi:10.1016/S0140-6736(10)60835-5.

    Article  CAS  PubMed  Google Scholar 

  80. Roberts I, Shakur H, Afolabi A, Brohi K, Coats T, Dewan Y, Gando S, Guyatt G, Hunt BJ, Morales C, Perel P, Prieto-Merino D, Woolley T, CRASH-2 collaborators. The importance of early treatment with tranexamic acid in bleeding trauma patients: an exploratory analysis of the CRASH-2 randomised controlled trial. Lancet. 2011;377(9771):1096–101. doi:10.1016/S0140-6736(11)60278-X. 1101.e1–2.

    Article  CAS  PubMed  Google Scholar 

  81. Dimitrova-Karamfilova A, Patokova Y, Solarova T, Petrova I, Natchev G. Rotation thromboelastography for assessment of hypercoagulation and thrombosis in patients with cardiovascular diseases. J Life Sci. 2012;6:28–35.

    Google Scholar 

  82. Hincker A, Feit J, Sladen RN, Wagener G. Rotational thromboelastometry predicts thromboembolic complications after major non-cardiac surgery. Crit Care. 2014;18(5):549 [Epub ahead of print].

    Article  PubMed  PubMed Central  Google Scholar 

  83. Snyder TA, Litwak KN, Tsukui H, Akimoto T, Kihara S, Yamazaki K, Wagner WR. Leukocyte-platelet aggregates and monocyte tissue factor expression in bovines implanted with ventricular assist devices. Artif Organs. 2007;31(2):126–31.

    Article  CAS  PubMed  Google Scholar 

  84. Hartmann M, Ozlügedik S, Peters J. Thiopental inhibits lipopolysaccharide-induced tissue factor expression. Anesth Analg. 2009;109(1):109–13. doi:10.1213/ane.0b013e3181a27cfb.

    Article  CAS  PubMed  Google Scholar 

  85. Schulte am Esch 2nd J, Akyildiz A, Tustas RY, Ganschow R, Schmelzle M, Krieg A, Robson SC, Topp SA, Rogiers X, Knoefel WT, Fischer L. ADP-dependent platelet function prior to and in the early course of pediatric liver transplantation and persisting thrombocytopenia are positively correlated with ischemia/reperfusion injury. Transpl Int. 2010;23(7):745–52. doi:10.1111/j.1432-2277.2010.01054.x.

    Article  CAS  PubMed  Google Scholar 

  86. Di Santo A, Amore C, Dell'Elba G, Manarini S, Evangelista V. Glycogen synthase kinase-3 negatively regulates tissue factor expression in monocytes interacting with activated platelets. J Thromb Haemost. 2011;9(5):1029–39. doi:10.1111/j.1538-7836.2011.04236.x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Rao LV, Pendurthi UR. Regulation of tissue factor coagulant activity on cell surfaces. J Thromb Haemost. 2012;10(11):2242–53. doi:10.1111/jth.12003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chen VM, Hogg PJ. Encryption and decryption of tissue factor. J Thromb Haemost. 2013;11 Suppl 1:277–84. doi:10.1111/jth.12228.

    Article  PubMed  Google Scholar 

  89. Sucker C, Paniczek S, Scharf RE, Litmathe J, Hartmann M. Rotation thromboelastography for the detection and characterization of lipoteichoid acid-induced activation of haemostasis in an in vitro sepsis model. Perfusion. 2013;28(2):146–51. doi:10.1177/0267659112464712.

    Article  CAS  PubMed  Google Scholar 

  90. Schöchl H, Solomon C, Schulz A, Voelckel W, Hanke A, Van Griensven M, Redl H, Bahrami S. Thromboelastometry (TEM) findings in disseminated intravascular coagulation in a pig model of endotoxinemia. Mol Med. 2011;17(3–4):266–72. doi:10.2119/molmed.2010.00159.

    PubMed  PubMed Central  Google Scholar 

  91. Semeraro F, Ammollo CT, Semeraro N, Colucci M. Tissue factor-expressing monocytes inhibit fibrinolysis through a TAFI-mediated mechanism, and make clots resistant to heparins. Haematologica. 2009;94(6):819–26. doi:10.3324/haematol.2008.000042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Meltzer ME, Lisman T, de Groot PG, Meijers JC, le Cessie S, Doggen CJ, Rosendaal FR. Venous thrombosis risk associated with plasma hypofibrinolysis is explained by elevated plasma levels of TAFI and PAI-1. Blood. 2010;116(1):113–21. doi:10.1182/blood-2010-02-267740.

    Article  CAS  PubMed  Google Scholar 

  93. Levi M. Coagulation in sepsis. Int J Intensive Care. 2013;20(3):77–81.

    Google Scholar 

  94. Mosnier LO. Platelet factor 4 inhibits thrombomodulin-dependent activation of thrombin-activatable fibrinolysis inhibitor (TAFI) by thrombin. J Biol Chem. 2011;286(1):502–10. doi:10.1074/jbc.M110.147959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ozolina A, Strike E, Jaunalksne I, Serova J, Romanova T, Zake LN, Sabelnikovs O, Vanags I. Influence of PAI-1 gene promoter-675 (4G/5G) polymorphism on fibrinolytic activity after cardiac surgery employing cardiopulmonary bypass. Medicina (Kaunas). 2012;48(10):515–20.

    Google Scholar 

  96. Koyama K, Madoiwa S, Nunomiya S, Koinuma T, Wada M, Sakata A, Ohmori T, Mimuro J, Sakata Y. Combination of thrombin-antithrombin complex, plasminogen activator inhibitor-1, and protein C activity for early identification of severe coagulopathy in initial phase of sepsis: a prospective observational study. Crit Care. 2014;18(1):R13. doi:10.1186/cc13190.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Chapman MP, Moore EE, Ramos CR, Ghasabyan A, Harr JN, Chin TL, Stringham JR, Sauaia A, Silliman CC, Banerjee A. Fibrinolysis greater than 3% is the critical value for initiation of antifibrinolytic therapy. J Trauma Acute Care Surg. 2013;75(6):961–7. doi:10.1097/TA.0b013e3182aa9c9f. discussion 967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Adamzik M, Langemeier T, Frey UH, Görlinger K, Saner F, Eggebrecht H, Peters J, Hartmann M. Comparison of thrombelastometry with simplified acute physiology score II and sequential organ failure assessment scores for the prediction of 30-day survival: a cohort study. Shock. 2011;35(4):339–42. doi:10.1097/SHK.0b013e318204bff6.

    Article  PubMed  Google Scholar 

  99. Da Luz LT, Nascimento B, Shankarakutty AK, Rizoli S, Adhikari NK. Effect of thromboelastography (TEG®) and rotational thromboelastometry (ROTEM®) on diagnosis of coagulopathy, transfusion guidance and mortality in trauma: descriptive systematic review. Crit Care. 2014;18(5):518. doi:10.1186/s13054-014-0518-9.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Levrat A, Gros A, Rugeri L, Inaba K, Floccard B, Negrier C, David JS. Evaluation of rotation thrombelastography for the diagnosis of hyperfibrinolysis in trauma patients. Br J Anaesth. 2008;100(6):792–7. doi:10.1093/bja/aen083.

    Article  CAS  PubMed  Google Scholar 

  101. Schöchl H, Frietsch T, Pavelka M, Jámbor C. Hyperfibrinolysis after major trauma: differential diagnosis of lysis patterns and prognostic value of thrombelastometry. J Trauma. 2009;67(1):125–31. doi:10.1097/TA.0b013e31818b2483.

    Article  PubMed  Google Scholar 

  102. Theusinger OM, Wanner GA, Emmert MY, Billeter A, Eismon J, Seifert B, Simmen HP, Spahn DR, Baulig W. Hyperfibrinolysis diagnosed by rotational thromboelastometry (ROTEM) is associated with higher mortality in patients with severe trauma. Anesth Analg. 2011;113(5):1003–12. doi:10.1213/ANE.0b013e31822e183f.

    Article  PubMed  Google Scholar 

  103. Khan S, Brohi K, Chana M, Raza I, Stanworth S, Gaarder C, Davenport R. International Trauma Research Network (INTRN). Hemostatic resuscitation is neither hemostatic nor resuscitative in trauma hemorrhage. J Trauma Acute Care Surg. 2014;76(3):561–7. doi:10.1097/TA.0000000000000146. discussion 567–8.

    Article  CAS  PubMed  Google Scholar 

  104. Stensballe J, Ostrowski SR, Johansson PI. Viscoelastic guidance of resuscitation. Curr Opin Anaesthesiol. 2014;27(2):212–8. doi:10.1097/ACO.0000000000000051.

    Article  PubMed  Google Scholar 

  105. Goerlinger K, Kiss G, Dirkmann D, Dusse F, Hanke A, Arvieux CC, Peters J. ROTEM-based algorithm for management of acute haemorrhage and coagulation disorders in trauma patients. Eur J Anaesthesiol. 2006;23 Suppl 37:S84–5.

    Article  Google Scholar 

  106. Waydhas C, Görlinger K. Coagulation management in multiple trauma. Unfallchirurg. 2009;112(11):942–50. doi:10.1007/s00113-009-1681-3.

    Article  CAS  PubMed  Google Scholar 

  107. Görlinger K, Dirkmann D, Weber CF, Rahe-Meyer N, Hanke AA. Algorithms for transfusion and coagulation management in massive haemorrhage. Anästh Intensivmed. 2011;52(2):145–59.

    Google Scholar 

  108. Schöchl H, Maegele M, Solomon C, Görlinger K, Voelckel W. Early and individualized goal-directed therapy for trauma-induced coagulopathy. Scand J Trauma Resusc Emerg Med. 2012;20:15. doi:10.1186/1757-7241-20-15.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Kozek-Langenecker SA. Coagulation and transfusion in the postoperative bleeding patient. Curr Opin Crit Care. 2014;20(4):460–6. doi:10.1097/MCC.0000000000000109.

    Article  PubMed  Google Scholar 

  110. Görlinger K, Dirkmann D, Hanke AA, Kamler M, Kottenberg E, Thielmann M, Jakob H, Peters J. First-line therapy with coagulation factor concentrates combined with point-of-care coagulation testing is associated with decreased allogeneic blood transfusion in cardiovascular surgery: a retrospective, single-center cohort study. Anesthesiology. 2011;115(6):1179–91. doi:10.1097/ALN.0b013e31823497dd.

    PubMed  Google Scholar 

  111. Weber CF, Görlinger K, Meininger D, Herrmann E, Bingold T, Moritz A, Cohn LH, Zacharowski K. Point-of-care testing: a prospective, randomized clinical trial of efficacy in coagulopathic cardiac surgery patients. Anesthesiology. 2012;117(3):531–47.

    Article  PubMed  Google Scholar 

  112. Görlinger K, Dirkmann D, Hanke AA. Potential value of transfusion protocols in cardiac surgery. Curr Opin Anaesthesiol. 2013;26(2):230–43. doi:10.1097/ACO.0b013e32835ddca6.

    Article  PubMed  CAS  Google Scholar 

  113. Schöchl H, Nienaber U, Hofer G, Voelckel W, Jambor C, Scharbert G, Kozek-Langenecker S, Solomon C. Goal-directed coagulation management of major trauma patients using thromboelastometry (ROTEM)-guided administration of fibrinogen concentrate and prothrombin complex concentrate. Crit Care. 2010;14(2):R55. doi:10.1186/cc8948.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Schöchl H, Nienaber U, Maegele M, Hochleitner G, Primavesi F, Steitz B, Arndt C, Hanke A, Voelckel W, Solomon C. Transfusion in trauma: thromboelastometry-guided coagulation factor concentrate-based therapy versus standard fresh frozen plasma-based therapy. Crit Care. 2011;15(2):R83. doi:10.1186/cc10078.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Görlinger K, Fries D, Dirkmann D, Weber CF, Hanke AA, Schöchl H. Reduction of fresh frozen plasma requirements by perioperative point-of-care coagulation management with early calculated goal-directed therapy. Transfus Med Hemother. 2012;39(2):104–13.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Schöchl H, Schlimp CJ, Voelckel W. Potential value of pharmacological protocols in trauma. Curr Opin Anaesthesiol. 2013;26(2):221–9. doi:10.1097/ACO.0b013e32835cca92.

    Article  PubMed  CAS  Google Scholar 

  117. Lendemans S, Düsing H, Assmuth S, Hußmann B, Wafaisade A, Lefering R, Görlinger K, Marzi I. Die Einführung eines spezifischen Gerinnungsprotokolls (Point of Care) verbessert das Outcome beim blutenden Schwerverletzten: eine Subgruppenanalyse von 172 Patienten unter Beteiligung des Traumaregisters DGU (gefördert durch die DIVI). Deutscher Kongress für Orthopädie und Unfallchirurgie (DKOU 2013). Berlin, 22–25.10.2013. Düsseldorf: German Medical Science GMS Publishing House; published 23 Oct 2013. DocWI50-561. doi:10.3205/13dkou367.

  118. Haas T, Görlinger K, Grassetto A, Agostini V, Simioni P, Nardi G, Ranucci M. Thromboelastometry for guiding bleeding management of the critically ill patient: a systematic review of the literature. Minerva Anestesiol. 2014 Feb 11 [Epub ahead of print].

    Google Scholar 

  119. Lier H, Vorweg M, Hanke A, Görlinger K. Thromboelastometry guided therapy of severe bleeding. Essener Runde algorithm. Hämostaseologie. 2013;33(1):51–61. doi:10.5482/HAMO-12-05-0011.

    Article  CAS  PubMed  Google Scholar 

  120. Kutcher ME, Cripps MW, McCreery RC, Crane IM, Greenberg MD, Cachola LM, Redick BJ, Nelson MF, Cohen MJ. Criteria for empiric treatment of hyperfibrinolysis after trauma. J Trauma Acute Care Surg. 2012;73(1):87–93. doi:10.1097/TA.0b013e3182598c70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Schlimp CJ, Voelckel W, Inaba K, Maegele M, Ponschab M, Schöchl H. Estimation of plasma fibrinogen levels based on hemoglobin, base excess and Injury Severity Score upon emergency room admission. Crit Care. 2013;17(4):R137. doi:10.1186/cc12816.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Moore HB, Moore EE, Gonzalez E, Chapman MP, Chin TL, Silliman CC, Banerjee A, Sauaia A. Hyperfibrinolysis, physiologic fibrinolysis, and fibrinolysis shutdown: the spectrum of postinjury fibrinolysis and relevance to antifibrinolytic therapy. J Trauma Acute Care Surg. 2014 Jul 21 [Epub ahead of print].

    Google Scholar 

  123. Mittermayr M, Streif W, Haas T, Fries D, Velik-Salchner C, Klingler A, Innerhofer P. Effects of colloid and crystalloid solutions on endogenous activation of fibrinolysis and resistance of polymerized fibrin to recombinant tissue plasminogen activator added ex vivo. Br J Anaesth. 2008;100(3):307–14.

    Article  CAS  PubMed  Google Scholar 

  124. Dirkmann D, Görlinger K, Gisbertz C, Dusse F, Peters J. Factor XIII and tranexamic acid but not recombinant factor VIIa attenuate tissue plasminogen activator-induced hyperfibrinolysis in human whole blood. Anesth Analg. 2012;114(6):1182–8. doi:10.1213/ANE.0b013e31823b6683.

    Article  CAS  PubMed  Google Scholar 

  125. Velik-Salchner C, Haas T, Innerhofer P, Streif W, Nussbaumer W, Klingler A, Klima G, Martinowitz U, Fries D. The effect of fibrinogen concentrate on thrombocytopenia. J Thromb Haemost. 2007;5(5):1019–25.

    Article  CAS  PubMed  Google Scholar 

  126. Schöchl H, Solomon C, Traintinger S, Nienaber U, Tacacs-Tolnai A, Windhofer C, Bahrami S, Voelckel W. Thromboelastometric (ROTEM) findings in patients suffering from isolated severe traumatic brain injury. J Neurotrauma. 2011;28(10):2033–41. doi:10.1089/neu.2010.1744.

    Article  PubMed  Google Scholar 

  127. Rahe-Meyer N, Solomon C, Winterhalter M, Piepenbrock S, Tanaka K, Haverich A, Pichlmaier M. Thromboelastometry-guided administration of fibrinogen concentrate for the treatment of excessive intraoperative bleeding in thoracoabdominal aortic aneurysm surgery. J Thorac Cardiovasc Surg. 2009;138(3):694–702. doi:10.1016/j.jtcvs.2008.11.065.

    Article  PubMed  Google Scholar 

  128. Rahe-Meyer N, Solomon C, Hanke A, Schmidt DS, Knoerzer D, Hochleitner G, Sørensen B, Hagl C, Pichlmaier M. Effects of fibrinogen concentrate as first-line therapy during major aortic replacement surgery: a randomized, placebo-controlled trial. Anesthesiology. 2013;118(1):40–50. doi:10.1097/ALN.0b013e3182715d4d.

    Article  CAS  PubMed  Google Scholar 

  129. Tanaka KA, Bader SO, Görlinger K. Novel approaches in management of perioperative coagulopathy. Curr Opin Anaesthesiol. 2014;27(1):72–80. doi:10.1097/ACO.0000000000000025.

    Article  CAS  PubMed  Google Scholar 

  130. Greene LA, Chen S, Seery C, Imahiyerobo AM, Bussel JB. Beyond the platelet count: immature platelet fraction and thromboelastometry correlate with bleeding in patients with immune thrombocytopenia. Br J Haematol. 2014;166(4):592–600. doi:10.1111/bjh.12929.

    Article  PubMed  Google Scholar 

  131. Flisberg P, Rundgren M, Engström M. The effects of platelet transfusions evaluated using rotational thromboelastometry. Anesth Analg. 2009;108(5):1430–2. doi:10.1213/ane.0b013e31819bccb7.

    Article  PubMed  Google Scholar 

  132. Tripodi A, Primignani M, Chantarangkul V, Lemma L, Jovani M, Rebulla P, Mannucci PM. Global hemostasis tests in patients with cirrhosis before and after prophylactic platelet transfusion. Liver Int. 2013;33(3):362–7. doi:10.1111/liv.12038.

    Article  PubMed  Google Scholar 

  133. Konkle BA. Acquired disorders of platelet function. Hematology Am Soc Hematol Educ Program. 2011;2011:391–6. doi:10.1182/asheducation-2011.1.391.

    Article  PubMed  Google Scholar 

  134. Scharf RE. Drugs that affect platelet function. Semin Thromb Hemost. 2012;38(8):865–83. doi:10.1055/s-0032-1328881. Epub 2012 Oct 30.

    Article  CAS  PubMed  Google Scholar 

  135. Koch CD, Wockenfus AM, Miller RS, Tolan NV, Chen D, Pruthi RK, Jaffe AS, Karon BS. Intra-assay precision, inter-assay precision, and reliability of five platelet function methods used to monitor the effect of aspirin and clopidogrel on platelet function. Clin Chem. 2013;59(10 Suppl):A152.

    Google Scholar 

  136. Inaba K, Branco BC, Rhee P, Holcomb JB, Blackbourne LH, Shulman I, Nelson J, Demetriades D. Impact of ABO-identical vs ABO-compatible nonidentical plasma transfusion in trauma patients. Arch Surg. 2010;145(9):899–906. doi:10.1001/archsurg.2010.175.

    Article  PubMed  Google Scholar 

  137. Hickey M, Gatien M, Taljaard M, Aujnarain A, Giulivi A, Perry JJ. Outcomes of urgent warfarin reversal with frozen plasma versus prothrombin complex concentrate in the emergency department. Circulation. 2013;128(4):360–4. doi:10.1161/CIRCULATIONAHA.113.001875.

    Article  CAS  PubMed  Google Scholar 

  138. Sarode R, Milling Jr TJ, Refaai MA, Mangione A, Schneider A, Durn BL, Goldstein JN. Efficacy and safety of a 4-factor prothrombin complex concentrate in patients on vitamin K antagonists presenting with major bleeding: a randomized, plasma-controlled, phase IIIb study. Circulation. 2013;128(11):1234–43. doi:10.1161/CIRCULATIONAHA.113.002283.

    CAS  PubMed  Google Scholar 

  139. Innerhofer P, Westermann I, Tauber H, Breitkopf R, Fries D, Kastenberger T, El Attal R, Strasak A, Mittermayr M. The exclusive use of coagulation factor concentrates enables reversal of coagulopathy and decreases transfusion rates in patients with major blunt trauma. Injury. 2013;44(2):209–16. doi:10.1016/j.injury.2012.08.047.

    Article  PubMed  Google Scholar 

  140. Hanke AA, Joch C, Görlinger K. Long-term safety and efficacy of a pasteurized nanofiltrated prothrombin complex concentrate (Beriplex P/N): a pharmacovigilance study. Br J Anaesth. 2013;110(5):764–72. doi:10.1093/bja/aes501.

    Article  CAS  PubMed  Google Scholar 

  141. Tazarourte K, Riou B, Tremey B, Samama CM, Vicaut E, Vigué B, EPAHK Study Group. Guideline-concordant administration of prothrombin complex concentrate and vitamin K is associated with decreased mortality in patients with severe bleeding under vitamin K antagonist treatment (EPAHK study). Crit Care. 2014;18(2):R81. doi:10.1186/cc13843.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Grottke O, van Ryn J, Spronk HM, Rossaint R. Prothrombin complex concentrates and a specific antidote to dabigatran are effective ex-vivo in reversing the effects of dabigatran in an anticoagulation/liver trauma experimental model. Crit Care. 2014;18(1):R27. doi:10.1186/cc13717.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Eller T, Busse J, Dittrich M, Flieder T, Alban S, Knabbe C, Birschmann I. Dabigatran, rivaroxaban, apixaban, argatroban and fondaparinux and their effects on coagulation POC and platelet function tests. Clin Chem Lab Med. 2014;52(6):835–44. doi:10.1515/cclm-2013-0936.

    Article  CAS  PubMed  Google Scholar 

  144. Levi M, Levy JH, Andersen HF, Truloff D. Safety of recombinant activated factor VII in randomized clinical trials. N Engl J Med. 2010;363(19):1791–800. doi:10.1056/NEJMoa1006221.

    Article  CAS  PubMed  Google Scholar 

  145. Simpson E, Lin Y, Stanworth S, Birchall J, Doree C, Hyde C. Recombinant factor VIIa for the prevention and treatment of bleeding in patients without haemophilia. Cochrane Database Syst Rev. 2012;3:CD005011. doi:10.1002/14651858.CD005011.pub4.

    PubMed  Google Scholar 

  146. Lau P, Ong V, Tan WT, Koh PL, Hartman M. Use of activated recombinant factor VII in severe bleeding—evidence for efficacy and safety in trauma, postpartum hemorrhage, cardiac surgery, and gastrointestinal bleeding. Transfus Med Hemother. 2012;39(2):139–50.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Smith I, Rapchuk I, Macdonald C, Thomson B, Pearse B. Management of exsanguination during laser lead extraction. J Cardiothorac Vasc Anesth. 2013 Oct 1. pii:S1053-0770(13)00279-6. doi:10.1053/j.jvca.2013.05.004 [Epub ahead of print].

  148. Mittermayr M, Velik-Salchner C, Stalzer B, Margreiter J, Klingler A, Streif W, Fries D, Innerhofer P. Detection of protamine and heparin after termination of cardiopulmonary bypass by thrombelastometry (ROTEM): results of a pilot study. Anesth Analg. 2009;108(3):743–50. doi:10.1213/ane.0b013e31818657a3.

    Article  CAS  PubMed  Google Scholar 

  149. Afshari A, Wikkelsø A, Brok J, Møller AM, Wetterslev J. Thrombelastography (TEG) or thromboelastometry (ROTEM) to monitor haemotherapy versus usual care in patients with massive transfusion. Cochrane Database Syst Rev. 2011;3:CD007871. doi:10.1002/14651858.CD007871.pub2.

    PubMed  Google Scholar 

  150. Nienaber U, Innerhofer P, Westermann I, Schöchl H, Attal R, Breitkopf R, Maegele M. The impact of fresh frozen plasma vs coagulation factor concentrates on morbidity and mortality in trauma-associated haemorrhage and massive transfusion. Injury. 2011;42(7):697–701. doi:10.1016/j.injury.2010.12.015.

    Article  PubMed  Google Scholar 

  151. Sibbing D, Steinhubl SR, Schulz S, Schömig A, Kastrati A. Platelet aggregation and its association with stent thrombosis and bleeding in clopidogrel-treated patients: initial evidence of a therapeutic window. J Am Coll Cardiol. 2010;56(4):317–8. doi:10.1016/j.jacc.2010.03.048.

    Article  PubMed  Google Scholar 

  152. Tantry US, Bonello L, Aradi D, Price MJ, Jeong YH, Angiolillo DJ, Stone GW, Curzen N, Geisler T, Ten Berg J, Kirtane A, Siller-Matula J, Mahla E, Becker RC, Bhatt DL, Waksman R, Rao SV, Alexopoulos D, Marcucci R, Reny JL, Trenk D, Sibbing D, Gurbel PA, Working Group on On-Treatment Platelet Reactivity. Consensus and update on the definition of on-treatment platelet reactivity to adenosine diphosphate associated with ischemia and bleeding. J Am Coll Cardiol. 2013;62(24):2261–73. doi:10.1016/j.jacc.2013.07.101.

    Article  CAS  PubMed  Google Scholar 

  153. Spahn DR, Goodnough LT. Alternatives to blood transfusion. Lancet. 2013;381(9880):1855–65. doi:10.1016/S0140-6736(13)60808-9.

    Article  PubMed  Google Scholar 

  154. Kozek-Langenecker SA, Afshari A, Albaladejo P, Santullano CA, De Robertis E, Filipescu DC, Fries D, Görlinger K, Haas T, Imberger G, Jacob M, Lancé M, Llau J, Mallett S, Meier J, Rahe-Meyer N, Samama CM, Smith A, Solomon C, Van der Linden P, Wikkelsø AJ, Wouters P, Wyffels P. Management of severe perioperative bleeding: guidelines from the European Society of Anaesthesiology. Eur J Anaesthesiol. 2013;30(6):270–382. doi:10.1097/EJA.0b013e32835f4d5b.

    Article  PubMed  Google Scholar 

  155. Spahn DR, Bouillon B, Cerny V, Coats TJ, Duranteau J, Fernández-Mondéjar E, Filipescu D, Hunt BJ, Komadina R, Nardi G, Neugebauer E, Ozier Y, Riddez L, Schultz A, Vincent JL, Rossaint R. Management of bleeding and coagulopathy following major trauma: an updated European guideline. Crit Care. 2013;17(2):R76. doi:10.1186/cc12685.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Craig J, Aguiar-Ibanez R, Bhattacharya S, Downie S, Duffy S, Kohli H, Nimmo A, Trueman P, Wilson S, Yunni Y. HTA Programme: Health Technology Assessment Report 11: the clinical and cost effectiveness of thromboelastography/thromboelastometry. NHS Quality Improvement Scotland, June 2008; ISBN: 1-84404-995-0; www.hhshealthquality.org; http://www.healthcareimprovementscotland.org/previous_resources/hta_report/hta/hta_11.aspx.

  157. HealthPACT Seretariat. Health Policy Advisory Committee on Technology. Technology Brief: Rotational thromboelastometry (ROTEM®)—targeted therapy for coagulation management in patients with massive bleeding. State of Queensland (Queensland Health), Australia, November 2012; http://www.health.qld.gov.au/healthpact/docs/briefs/WP024.pdf.

  158. Newland A, Kroese M, Akehurst R, Collinson P, Crawford S, Cree IA, Denton E, Edwards S, Evans D, Fleming S, Hyde C, Kalsheker N, Lowry M, Messenger M, Naylor P, Neely D, Nicholas R, Norbury G, Ossa D, Sculpher M, Thomas S, Weiberger P, Wiltsher C, Argarwal S, Davidson S, Green L, Haynes S, O’Keefe N. NICE diagnostics guidance 13: detecting, managing and monitoring haemostasis: viscoelastometric point-of-care testing (ROTEM, TEG and Sonoclot systems). National Institute for Health and Care Excellence (NICE); August 2014; ISBN: 978-1-4731-0688-8; www.nice.org.uk/dg13; http://www.nice.org.uk/guidance/dg13/resources/guidance-detecting-managing-and-monitoring-haemostasis-viscoelastometric-pointofcare-testing-rotem-teg-and-sonoclot-systems-pdf.

  159. Görlinger K, Kozek-Langenecker SA. Economic aspects and organization. In: Marcucci CE, Schoettker P, editors. Perioperative hemostasis: coagulation for anesthesiologists. Berlin, Heidelberg: Springer; 2015. p. 412–45. doi:10.1007/978-3-642-55004-1_24.

    Google Scholar 

  160. Cheng D, Martin J. Evidence-based practice and health technology assessment: a call for anesthesiologists to engage in knowledge translation. Can J Anaesth. 2011;58(4):354–63. doi:10.1007/s12630-011-9463-0.

    Article  PubMed  Google Scholar 

  161. Martin J, Cheng D. Role of the anesthesiologist in the wider governance of healthcare and health economics. Can J Anaesth. 2013;60(9):918–28. doi:10.1007/s12630-013-9994-7.

    Article  PubMed  Google Scholar 

  162. Spahn DR, Rossaint R. All we ever wanted to know about perioperative bleeding. Eur J Anaesthesiol. 2013;30(6):267–9. doi:10.1097/EJA.0b013e328361af11.

    Article  PubMed  Google Scholar 

  163. Shafi S, Barnes SA, Rayan N, Kudyakov R, Foreman M, Cryer HG, Alam HB, Hoff W, Holcomb J. Compliance with recommended care at trauma centers: association with patient outcomes. J Am Coll Surg. 2014;219(2):189–98. doi:10.1016/j.jamcollsurg.2014.04.005. Epub 2014 Apr 30.

    Article  PubMed  Google Scholar 

  164. Rossaint R, Bouillon B, Cerny V, Coats TJ, Duranteau J, Fernández-Mondéjar E, Filipescu D, Hunt BJ, Komadina R, Maegele M, Nardi G, Neugebauer E, Ozier Y, Riddez L, Schultz A, Vincent JL, Spahn DR. STOP bleeding campaign. The STOP the bleeding campaign. Crit Care. 2013;17(2):136. doi:10.1186/cc12579.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Görlinger M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Görlinger, K., Dirkmann, D., Hanke, A.A. (2016). Rotational Thromboelastometry (ROTEM®). In: Gonzalez, E., Moore, H., Moore, E. (eds) Trauma Induced Coagulopathy. Springer, Cham. https://doi.org/10.1007/978-3-319-28308-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28308-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28306-7

  • Online ISBN: 978-3-319-28308-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics