Skip to main content

Metabolite Identification in Complex Mixtures Using Nuclear Magnetic Resonance Spectroscopy

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Modern Magnetic Resonance

Abstract

Metabolomics has become a major tool in the analysis of food samples and the investigation of the impact of food on human health. Food samples, and biofluids in which food-derived metabolites are found, are complex mixtures of metabolites. Metabolomics aims to capture the entire set of metabolites (small molecules) present in a sample, using methods such as mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy. However, identification of those metabolites remains a challenging task, and this chapter describes these challenges in relation to analysis of complex mixtures using nuclear NMR spectroscopy. Major challenges include the large diversity in metabolites, the problem of spectral overlap, and the lack of available reference spectra. The identification of known metabolites (structural confirmation) using a combination of NMR spectroscopy methods and the importance of spectral databases and emerging software tools for structural confirmation are presented. The importance of NMR spectroscopy in structural elucidation of novel metabolites is also described, with the contribution of mass spectrometry and hyphenated systems highlighted. Finally, the debate on reporting standards for metabolite identifications and annotations to facilitate data sharing and the emerging scoring systems to communicate confidence in metabolite identifications are discussed. Without comprehensive metabolite identification, biological interpretation of metabolomics results may be misleading or incomplete and so understanding of how metabolites are identified and the confidence in those identifications is crucial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Wishart DS. Metabolomics: applications to food science and nutrition research. Trends Food Sci Technol. 2008;19(9):482–93.

    Article  Google Scholar 

  2. Cevallos-Cevallos JM, Reyes-De-Corcuera JI, Etxeberria E, Danyluk MD, Rodrick GE. Metabolomic analysis in food science: a review. Trends Food Sci Technol. 2009;20(11–12):557–66.

    Article  Google Scholar 

  3. O’Gorman A, Brennan L. Metabolomic applications in nutritional research: a perspective. J Sci Food Agric. 2015;95(13):2567–70.

    Article  Google Scholar 

  4. Scalbert A, Brennan L, Manach C, Andres-Lacueva C, Dragsted LO, Draper J, et al. The food metabolome: a window over dietary exposure. Am J Clin Nutr. 2014;99(6):1286–308.

    Article  Google Scholar 

  5. Dunn WB, Broadhurst DI, Atherton HJ, Goodacre R, Griffin JL. Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem Soc Rev. 2011;40(1):387–426.

    Article  Google Scholar 

  6. Mahrous EA, Farag MA. Two dimensional NMR spectroscopic approaches for exploring plant metabolome: a review. J Adv Res. 2015;6(1):3–15.

    Article  Google Scholar 

  7. Wishart DS. Advances in metabolite identification. CORD Conf Proc. 2011;3(15):1769–82.

    Google Scholar 

  8. van der Hooft JJJ, de Vos RCH, Ridder L, Vervoort J, Bino RJ. Structural elucidation of low abundant metabolites in complex sample matrices. Metabolomics. 2013;9(5):1009–18.

    Article  Google Scholar 

  9. Halabalaki M, Vougogiannopoulou K, Mikros E, Skaltsounis AL. Recent advances and new strategies in the NMR-based identification of natural products. Curr Opin Biotechnol. 2014;25:1–7.

    Article  Google Scholar 

  10. Moco S, Bino RJ, De Vos RCH, Vervoort J. Metabolomics technologies and metabolite identification. Tr Anal Chem. 2007;26(9):855–66.

    Article  Google Scholar 

  11. Dona AC, Kyriakides M, Scott F, Shephard EA, Varshavi D, Veselkov K, et al. A guide to the identification of metabolites in NMR-based metabonomics/metabolomics experiments. Comput Struct Biotechnol J. 2016;14:135–53.

    Article  Google Scholar 

  12. Everett JR. A new paradigm for known metabolite identification in metabonomics/metabolomics: metabolite identification efficiency. Comput Struct Biotechnol J. 2015;13:131–44.

    Article  Google Scholar 

  13. Scalbert A, Andres-Lacueva C, Arita M, Kroon P, Manach C, Urpi-Sarda M, et al. Databases on food phytochemicals and their health-promoting effects. J Agr Food Chem. 2011;59(9):4331–48.

    Article  Google Scholar 

  14. Donovan JL, Crespy V, Oliveira M, Cooper KA, Gibson BB, Williamson G. (+)-Catechin is more bioavailable than (−)-catechin: relevance to the bioavailability of catechin from cocoa. Free Radic Res. 2006;40(10):1029–34.

    Article  Google Scholar 

  15. Ottaviani JI, Momma TY, Heiss C, Kwik-Uribe C, Schroeter H, Keen CL. The stereochemical configuration of flavanols influences the level and metabolism of flavanols in humans and their biological activity in vivo. Free Rad Biol Med. 2011;50(2):237–44.

    Article  Google Scholar 

  16. Jaroszewski JW. Hyphenated NMR methods in natural products research, Part 2: HPLC-SPE-NMR and other new trends in NMR hyphenation. Planta Med. 2005;71(09):795–802.

    Article  Google Scholar 

  17. Hall R, Beale M, Fiehn O, Hardy N, Sumner L, Bino R. Plant metabolomics: the missing link in functional genomics strategies. Plant Cell. 2002;14:1437–40.

    Article  Google Scholar 

  18. Gowda GN, Raftery D. Can NMR solve some significant challenges in metabolomics? J Magn Reson. 2015;260:144–60.

    Article  Google Scholar 

  19. Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, et al. PubChem substance and compound databases. Nucleic Acids Res. 2016;44(D1):D1202–13.

    Article  Google Scholar 

  20. Vinaixa M, Schymanski EL, Neumann S, Navarro M, Salek RM, Yanes O. Mass spectral databases for LC/MS- and GC/MS-based metabolomics: state of the field and future prospects. TrAC, Trends Anal Chem. 2016;78:23–35.

    Article  Google Scholar 

  21. Ellinger JJ, Chylla RA, Ulrich EL, Markley JL. Databases and software for NMR-Based metabolomics. Curr Metab. 2013;1(1):28–40. doi:10.2174/2213235X11301010028.

    Google Scholar 

  22. Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, et al. Proposed minimum reporting standards for chemical analysis. Metabolomics. 2007;3(3):211–21.

    Article  Google Scholar 

  23. Sumner LW, Lei Z, Nikolau BJ, Saito K, Roessner U, Trengove R. Proposed quantitative and alphanumeric metabolite identification metrics. Metabolomics. 2014;10(6):1047–9.

    Article  Google Scholar 

  24. MacKinnon N, Somashekar BS, Tripathi P, Ge W, Rajendiran TM, Chinnaiyan AM, et al. MetaboID: a graphical user interface package for assignment of 1 H NMR spectra of bodyfluids and tissues. J Magn Reson. 2013;226:93–9.

    Article  Google Scholar 

  25. Tulpan D, Léger S, Belliveau L, Culf A, Čuperlović-Culf M. MetaboHunter: an automatic approach for identification of metabolites from (1)H-NMR spectra of complex mixtures. BMC Bioinf. 2011;12:400.

    Article  Google Scholar 

  26. Kumar Bharti S, Roy R. Metabolite identification in NMR-based metabolomics. Curr Metab. 2014;2(3):163–73.

    Article  Google Scholar 

  27. Xia J, Bjorndahl TC, Tang P, Wishart DS. MetaboMiner–semi-automated identification of metabolites from 2D NMR spectra of complex biofluids. BMC Bioinf. 2008;9(1):1.

    Article  Google Scholar 

  28. Ludwig C, Easton JM, Lodi A, Tiziani S, Manzoor SE, Southam AD, et al. Birmingham Metabolite Library: a publicly accessible database of 1-D 1H and 2-D 1H J-resolved NMR spectra of authentic metabolite standards (BML-NMR). Metabolomics. 2011;8(1):8–18.

    Article  Google Scholar 

  29. Giraudeau P, Frydman L. Ultrafast 2D NMR: an emerging tool in analytical spectroscopy. Annu Rev Anal Chem. 2014;7(1):129–61.

    Article  Google Scholar 

  30. Ferry-Dumazet H, Gil L, Deborde C, Moing A, Bernillon S, Rolin D, et al. MeRy-B: a web knowledgebase for the storage, visualization, analysis and annotation of plant NMR metabolomic profiles. BMC Plant Biol. 2011;11(1):104.

    Article  Google Scholar 

  31. Mohamed A, Nguyen CH, Mamitsuka H. Current status and prospects of computational resources for natural product dereplication: a review. Brief Bioinform. 2015;17:309–21:bbv042.

    Article  Google Scholar 

  32. Weljie AM, Newton J, Jirik FR, Vogel HJ. Evaluating low-intensity unknown signals in quantitative proton NMR mixture analysis. Anal Chem. 2008;80(23):8956–65.

    Article  Google Scholar 

  33. Mihaleva VV, te Beek TAH, van Zimmeren F, Moco S, Laatikainen R, Niemitz M, et al. MetIDB: a publicly accessible database of predicted and experimental 1H NMR spectra of flavonoids. Anal Chem. 2013;85(18):8700–7.

    Article  Google Scholar 

  34. Jeffryes J, Colastani R, Elbadawi-Sidhu M, Kind T, Niehaus T, Broadbelt L, et al. MINEs: open access databases of computationally predicted enzyme promiscuity products for untargeted metabolomics. J Cheminform. 2015;7(1):1–8.

    Article  Google Scholar 

  35. Dubey A, Rangarajan A, Pal D, Atreya HS. Pattern recognition-based approach for identifying metabolites in nuclear magnetic resonance-based metabolomics. Anal Chem. 2015;87(14):7148–55.

    Article  Google Scholar 

  36. Cui Q, Lewis IA, Hegeman AD, Anderson ME, Li J, Schulte CF, et al. Metabolite identification via the Madison Metabolomics Consortium Database. Nat Biotechnol. 2008;26(2):162–4.

    Article  Google Scholar 

  37. Zhang F, Robinette SL, Bruschweiler-Li L, Brüschweiler R. Web server suite for complex mixture analysis by covariance NMR. Magn Reson Chem. 2009;47(S1):S118–22.

    Article  Google Scholar 

  38. Hao J, Astle W, De Iorio M, Ebbels TMD. BATMAN – an R package for the automated quantification of metabolites from nuclear magnetic resonance spectra using a Bayesian model. Bioinformatics. 2012;28(15):2088–90.

    Article  Google Scholar 

  39. Song X, Zhang B-L, Liu H-M, Yu B-Y, Gao X-M, Kang L-Y. IQMNMR: open source software using time-domain NMR data for automated identification and quantification of metabolites in batches. BMC Bioinf. 2011;12(1):1.

    Article  Google Scholar 

  40. Ravanbakhsh S, Liu P, Bjordahl TC, Mandal R, Grant JR, Wilson M, et al. Accurate, fully-automated NMR spectral profiling for metabolomics. PLoS One. 2015;10(5):e0124219.

    Article  Google Scholar 

  41. Ludwig C, Günther UL. MetaboLab-advanced NMR data processing and analysis for metabolomics. Bmc Bioinf. 2011;12(1):366.

    Article  Google Scholar 

  42. Bodis L, Ross A, Pretsch E. A novel spectra similarity measure. Chemom Intell Lab Syst. 2007;85(1):1–8.

    Article  Google Scholar 

  43. Farkas M, Bendl JH, Welti D, Pretsch E, Dütsch S, Portmann P, et al. Similarity search for a 1H-NMR spectroscopic data base. Anal Chim Acta. 1988;206:173–87.

    Article  Google Scholar 

  44. van der Hooft JJJ, de Vos RCH, Mihaleva V, Bino RJ, Ridder L, de Roo N, et al. Structural elucidation and quantification of phenolic conjugates present in human urine after tea intake. Anal Chem. 2012;84(16):7263–71.

    Article  Google Scholar 

  45. Gómez J, Brezmes J, Mallol R, Rodríguez M, Vinaixa M, Salek R, et al. Dolphin: a tool for automatic targeted metabolite profiling using 1D and 2D 1H-NMR data. Anal Bioanal Chem. 2014;406(30):7967–76.

    Article  Google Scholar 

  46. Cloarec O, Dumas M, Craig A, Barton R, Trygg J. Statistical total correlation spectroscopy (STOCSY): a new approach for individual biomarker identification from metabonomic NMR datasets. Anal Chem. 2005;77:1282–9.

    Article  Google Scholar 

  47. Nicholson JK, Holmes E, Kinross JM, Darzi AW, Takats Z, Lindon JC. Metabolic phenotyping in clinical and surgical environments. Nature. 2012;491(7424):384–92.

    Article  Google Scholar 

  48. Beckonert O, Keun HC, Ebbels TM, Bundy J, Holmes E, Lindon JC, et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc. 2007;2(11):2692–703.

    Article  Google Scholar 

  49. Spraul M, Freund AS, Nast RE, Withers RS, Maas WE, Corcoran O. Advancing NMR sensitivity for LC-NMR-MS using a cryoflow probe: application to the analysis of acetaminophen metabolites in urine. Anal Chem. 2003;75(6):1536–41.

    Article  Google Scholar 

  50. Molinski TF. NMR of natural products at the ‘nanomole-scale’. Nat Prod Rep. 2010;27(3):321–9.

    Article  Google Scholar 

  51. Claridge TDW, High-Resolution NMR. Techniques. In: Backvall J-E, Baldwin JE, Williams RM, editors. Organic chemistry. Amsterdam: Elsevier; 2009. p. 383.

    Google Scholar 

  52. Breton RC, Reynolds WF. Using NMR to identify and characterize natural products. Nat Prod Rep. 2013;30(4):501–24.

    Article  Google Scholar 

  53. Jayaseelan KV, Steinbeck C. Building blocks for automated elucidation of metabolites: natural product-likeness for candidate ranking. Bmc Bioinf. 2014;15(1):234.

    Article  Google Scholar 

  54. Steinbeck C, Kuhn S. NMRShiftDB–compound identification and structure elucidation support through a free community-built web database. Phytochemistry. 2004;65(19):2711–7.

    Article  Google Scholar 

  55. Sprogøe K, Stærk D, Ziegler HL, Jensen TH, Holm-Møller SB, Jaroszewski JW. Combining HPLC-PDA-MS-SPE-NMR with circular dichroism for complete natural product characterization in crude extracts: levorotatory gossypol in Thespesia danis. J Nat Prod. 2008;71(4):516–9.

    Article  Google Scholar 

  56. Clendinen CS, Stupp GS, Ajredini R, Lee-McMullen B, Beecher C, Edison AS. An overview of methods using 13C for improved compound identification in metabolomics and natural products. Front Plant Sci. 2015;6:611.

    Article  Google Scholar 

  57. van der Hooft JJJ, Mihaleva V, de Vos RCH, Bino RJ, Vervoort J. A strategy for fast structural elucidation of metabolites in small volume plant extracts using automated MS-guided LC-MS-SPE-NMR. Magn Reson Chem. 2011;49:S55–60.

    Article  Google Scholar 

  58. Bingol K, Bruschweiler R. NMR/MS translator for the enhanced simultaneous analysis of metabolomics mixtures by NMR spectroscopy and mass spectrometry: application to human urine. J Proteome Res. 2015;14:2642.

    Article  Google Scholar 

  59. Crockford DJ, Holmes E, Lindon JC, Plumb RS, Zirah S, Bruce SJ, et al. Statistical heterospectroscopy, an approach to the integrated analysis of NMR and UPLC-MS data sets: application in metabonomic toxicology studies. Anal Chem. 2006;78(2):363–71.

    Article  Google Scholar 

  60. Sturm S, Seger C. Liquid chromatography–nuclear magnetic resonance coupling as alternative to liquid chromatography–mass spectrometry hyphenations: curious option or powerful and complementary routine tool? J Chromatogr A. 2012;1259:50–61.

    Article  Google Scholar 

  61. van Duynhoven J, van der Hooft JJJ, van Dorsten FA, Peters S, Foltz M, Gomez-Roldan V, et al. Rapid and sustained systemic circulation of conjugated gut microbial catabolites after single-dose black tea extract consumption. J Proteome Res. 2014;13(5):2668–78.

    Article  Google Scholar 

  62. Salek R, Steinbeck C, Viant M, Goodacre R, Dunn W. The role of reporting standards for metabolite annotation and identification in metabolomic studies. GigaScience. 2013;2(1):13.

    Article  Google Scholar 

  63. Rocca-Serra P, Salek R, Arita M, Correa E, Dayalan S, Gonzalez-Beltran A, et al. Data standards can boost metabolomics research, and if there is a will, there is a way. Metabolomics. 2015;12(1):1–13.

    Google Scholar 

  64. Creek D, Dunn W, Fiehn O, Griffin J, Hall R, Lei Z, et al. Metabolite identification: are you sure? And how do your peers gauge your confidence? Metabolomics. 2014;10(3):350–3.

    Article  Google Scholar 

  65. Heller S, McNaught A, Stein S, Tchekhovskoi D, Pletnev I. InChI - the worldwide chemical structure identifier standard. J Cheminform. 2013;5(1):7.

    Article  Google Scholar 

  66. Weininger D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci. 1988;28(1):31–6.

    Article  Google Scholar 

  67. Salek R, Neumann S, Schober D, Hummel J, Billiau K, Kopka J, et al. COordination of Standards in MetabOlomicS (COSMOS): facilitating integrated metabolomics data access. Metabolomics. 2015;1–11:1578.

    Google Scholar 

  68. Nicholson JK, Foxall PJ, Spraul M, Farrant RD, Lindon JC. 750 MHz 1H and 1H-13C NMR spectroscopy of human blood plasma. Anal Chem. 1995;67(5):793–811.

    Article  Google Scholar 

  69. Puchades-Carrasco L, Palomino-Schätzlein M, Pérez-Rambla C, Pineda-Lucena A. Bioinformatics tools for the analysis of NMR metabolomics studies focused on the identification of cliniclly relevant biomarkers. Brief Bioinform. 2015;17:541–52:bbv077.

    Article  Google Scholar 

  70. Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, et al. HMDB 3.0—The human metabolome database in 2013. Nucleic Acids Res. 2013;41(D1):D801–7.

    Article  Google Scholar 

  71. Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, et al. BioMagResBank. Nucleic Acids Res. 2008;36 suppl 1:D402–8.

    Google Scholar 

  72. Weljie AM, Newton J, Mercier P, Carlson E, Slupsky CM. Targeted profiling: quantitative analysis of 1H NMR metabolomics data. Anal Chem. 2006;78(13):4430–42.

    Article  Google Scholar 

  73. Akiyama K, Chikayama E, Yuasa H, Shimada Y, Tohge T, Shinozaki K, et al. PRIMe: a web site that assembles tools for metabolomics and transcriptomics. In Silico Biol. 2008;8(3, 4):339–45.

    Google Scholar 

  74. Bingol K, Zhang F, Bruschweiler-Li L, Brüschweiler R. TOCCATA: a customized carbon total correlation spectroscopy NMR metabolomics database. Anal Chem. 2012;84(21):9395–401.

    Article  Google Scholar 

  75. Bingol K, Bruschweiler-Li L, Li D-W, Brüschweiler R. Customized metabolomics database for the analysis of NMR 1H–1H TOCSY and 13C–1H HSQC-TOCSY spectra of complex mixtures. Anal Chem. 2014;86(11):5494–501.

    Article  Google Scholar 

  76. Kuhn S, Schlörer NE. Facilitating quality control for spectra assignments of small organic molecules: nmrshiftdb2–a free in-house NMR database with integrated LIMS for academic service laboratories. Magn Reson Chem. 2015;53(8):582–9.

    Article  Google Scholar 

  77. Kikuchi J, Tsuboi Y, Komatsu K, Gomi M, Chikayama E, Date Y. SpinCouple: development of a web tool for analyzing metabolite mixtures via two-dimensional J-resolved NMR database. Anal Chem. 2015;88(1):659–65.

    Article  Google Scholar 

  78. Hao J, Liebeke M, Astle W, De Iorio M, Bundy JG, Ebbels TMD. Bayesian deconvolution and quantification of metabolites in complex 1D NMR spectra using BATMAN. Nat Protocols. 2014;9(6):1416–27.

    Article  Google Scholar 

  79. Alonso A, Rodríguez MA, Vinaixa M, Tortosa R, Correig X, Julià A, et al. Focus: a robust workflow for one-dimensional NMR spectral analysis. Anal Chem. 2014;86(2):1160–9.

    Article  Google Scholar 

  80. Chignola F, Mari S, Stevens TJ, Fogh RH, Mannella V, Boucher W, et al. The CCPN Metabolomics Project: a fast protocol for metabolite identification by 2D-NMR. Bioinformatics. 2011;27(6):885–6.

    Article  Google Scholar 

  81. Chikayama E, Sekiyama Y, Okamoto M, Nakanishi Y, Tsuboi Y, Akiyama K, et al. Statistical indices for simultaneous large-scale metabolite detections for a single NMR spectrum. Anal Chem. 2010;82(5):1653–8.

    Article  Google Scholar 

Download references

Acknowledgments

Justin van der Hooft is supported by the Wellcome Trust (grant no. 105614/Z/14/Z). Naomi Rankin is supported by UPBEAT – The UPBEAT RCT mother-child study. Stratifying and treating obese pregnant women to prevent adverse pregnancy, perinatal and longer term outcomes – MRC (MR/L002477/1).

Glasgow Polyomics (including the NMR metabolomics facility) is supported by the Wellcome Trust (grant no. 105614/Z/14/Z). Our recent work in 1H-NMR metabolomics is supported by (i) the Chief Scientist Office, Scotland (CZB/4/613); (ii) The Wellcome Trust Institutional Strategic Support Fund (ISSF) (WT097821MF and 105614/z/14/z); (iii) The European Federation of Pharmaceutical Industries Associations (EFPIA) Innovative Medicines Initiative Joint Undertaking (EMIF) (grant number 115372); (iv) The European commission, under the Health Cooperation Work Programme of the 7th Framework Programme (Grant number 305507) under Heart “omics” in AGEing (HOMAGE); and (v) chest, heart and stroke Scotland (R13/A149).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin J. J. van der Hooft .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

van der Hooft, J.J.J., Rankin, N. (2017). Metabolite Identification in Complex Mixtures Using Nuclear Magnetic Resonance Spectroscopy. In: Webb, G. (eds) Modern Magnetic Resonance. Springer, Cham. https://doi.org/10.1007/978-3-319-28275-6_6-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28275-6_6-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28275-6

  • Online ISBN: 978-3-319-28275-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Metabolite Identification in Complex Mixtures Using Nuclear Magnetic Resonance Spectroscopy
    Published:
    15 December 2017

    DOI: https://doi.org/10.1007/978-3-319-28275-6_6-2

  2. Original

    Metabolite Identification in Complex Mixtures Using Nuclear Magnetic Resonance Spectroscopy
    Published:
    05 October 2016

    DOI: https://doi.org/10.1007/978-3-319-28275-6_6-1