Skip to main content

Application of EPR in Studies of Archaeological Samples

  • Living reference work entry
  • First Online:
Modern Magnetic Resonance

Abstract

Electron paramagnetic resonance (EPR), also known as electron spin resonance (ESR), is more and more used in archaeology, and types of materials analyzed or purposes expand each year. Among its applications, dating is one of the most important. Many materials containing quartz or carbonates could be dated, from sediments to tephras including heated lithic artifacts and potteries, but also teeth, speleothems, shells, corals, and even mortars or plasters. The thermal history is also an important information which can be obtained by EPR to understand ancient ways of using fire for cooking or for lithic or ceramic industry. A third application is the determination of the soil or water source, which could help to understand whence original matter used for lithic or ceramic industry came or to describe climatic environment of settlements. Archaeological artifacts can also be studied, leading to the knowledge of ancient pigments and techniques used in glasses, oil paintings, or inks. Ideas of aging status or processes can be obtained for organic materials such as paper, wood, or leather. Finally, other alternative EPR experiments, such as other frequencies than X-band, EPR microscopy, and pulsed EPR, will be described. In several archaeological research domains, EPR has been, only recently, frequently used, and a lot of effort is spent to increase reliability of the results, especially in EPR dating of the earliest or oldest samples, but also in thermal history, and tendencies to try to normalize procedures for better accuracies and easier comparisons are observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

CW:

Continuous wave

D ac :

Accumulated dose

D an :

Annual dose rate

D eq :

Equivalent dose

D i :

Irradiation dose of aliquot i

DSE:

Double saturation exponentials

EMPA:

Electron microprobe analysis

EPR:

Electron paramagnetic resonance

ESR:

Electron spin resonance

EXP:

Exponential

FTIR:

Fourier transform infrared spectroscopy

I :

EPR signal intensity

LIN:

Linear

LU:

Linear U-uptake

NMR:

Nuclear magnetic resonance

OHC:

Oxygen hole center

OSL:

Optically stimulated luminescence

SSE:

Single saturation exponential

T heat :

Heating temperature

Ti-2:

Subtraction of two EXP as a fitting function of the high dose-response curve of Ti-Li

TL:

Thermoluminescence

U:

Uranium

References

  1. Ikeya M. New applications of electron spin resonance: dating, dosimetry, microscopy. Singapore: World Scientific; 1993.

    Book  Google Scholar 

  2. Rink WJ. Electron spin resonance (ESR) dating and ESR applications in quaternary science and archaeometry. Radiat Meas. 1997;27:975–1025.

    Article  Google Scholar 

  3. Weil JA, Bolton JR. Electron paramagnetic resonance: elementary theory and applications. 2nd ed. New York: Wiley-interscience; 1994.

    Google Scholar 

  4. Ikeya M. Dating a stalactite by electron paramagnetic resonance. Nature. 1975;255:48–50.

    Article  Google Scholar 

  5. Jonas M. Concepts and methods of ESR dating. Radiat Meas. 1997;27:943–73.

    Article  Google Scholar 

  6. Skinner AR. Current topics in ESR dating. Radiat Meas. 2011;46:749–53.

    Article  Google Scholar 

  7. Duval M. Comments on “ESR dating of the Majuangou and Banshan Paleolithic sites in the Nihewan Basin, North China” by Liu et al. (2014). J Hum Evol. 2016;90:198–202.

    Article  Google Scholar 

  8. Toyoda S. Paramagnetic lattice defects in quartz for applications to ESR dating. Quat Geochronol. 2015;30:498–505.

    Article  Google Scholar 

  9. Voinchet P, Toyoda S, Falguères C, Hernandez M, Tissoux H, Moreno D, Bahain J-J. Evaluation of ESR residual dose in quartz modern samples, an investigation on environmental dependence. Quat Geochronol. 2015;30:506–12.

    Article  Google Scholar 

  10. Duval M, Sancho C, Calle M, Guilarte V, Peña-Monné JL. On the interest of using the multiple center approach in ESR dating of optically bleached quartz grains: some examples from the Early Pleistocene terraces of the Alcanadre River (Ebro basin, Spain). Quat Geochronol. 2015;29:58–69.

    Article  Google Scholar 

  11. Tani A, Bartoll J, Ikeya M, Komura K, Kajiwara H, Fujimura S, Kamada T, Yokoyama Y. ESR study of thermal history and dating of a stone tool. Appl Magn Reson. 1997;13:561–9.

    Article  Google Scholar 

  12. Tsukamoto S, Toyoda S, Tani A, Oppermann F. Single aliquot regenerative dose method for ESR dating using X-ray irradiation and preheat. Radiat Meas. 2015;81:9–15.

    Article  Google Scholar 

  13. Cano NF, Ribeiro RB, Munita CS, Watanabe S, Neves EG, Tamanaha EK. Dating and determination of firing temperature of ancient potteries from São Paulo II archaeological site, Brazil by TL and EPR techniques. J Cult Herit. 2015;16:361–4.

    Article  Google Scholar 

  14. Fattibene P, Callens F. EPR dosimetry with tooth enamel: a review. Appl Radiat Isot. 2010;68:2033–116.

    Article  Google Scholar 

  15. Shao Q, Chadam J, Grün R, Falguères C, Dolo J-M, Bahain J-J. The mathematical basis for the US-ESR dating method. Quat Geochronol. 2015;30:1–8.

    Article  Google Scholar 

  16. Rodríguez-Rey M, Herrando-Pérez S, Gillespie R, Jacobs Z, Saltré F, Brook BW, Prideaux GJ, Roberts RG, Cooper A, Alroy J, Miller GH, Bird MI, Johnson CN, Beeton N, Turney CSM, Bradshaw CJA. Criteria for assessing the quality of middle Pleistocene to Holocene vertebrate fossil ages. Quat Geochronol. 2015;30:69–79.

    Article  Google Scholar 

  17. Duval M, Grün R. Are published ESR dose assessments on fossil tooth enamel reliable? Quat Geochronol. 2016;31:19–27.

    Article  Google Scholar 

  18. Nosenko VV, Vorona IP, Baran NP, Ishchenko SS, Vysotskyi BV, Krakhmalnaya TV, Semenov YA. Comparative EPR study CO2 radicals in modern and fossil tooth enamel. Radiat Meas. 2015;78:53–7.

    Article  Google Scholar 

  19. Brumm A, van den Bergh GD, Storey M, Kurniawan I, Alloway BV, Setiawan R, Setiyabudi E, Grün R, Moore MW, Yurnaldi D, Puspaningrum MR, Wibowo UP, Insani H, Sutisna I, Westgate JA, Pearce NJG, Duval M, Meijer HJM, Aziz F, Sutikna T, van der Kaars S, Flude S, Morwood MJ. Age and context of the oldest known hominin fossils from Flores. Nature. 2016;534:249–53.

    Article  Google Scholar 

  20. Pirouelle F, Bahain JJ, Falguères C, Dolo JM. Study of the effect of a thermal treatment on the D E determination in ESR dating of speleothems. Quat Geochronol. 2007;2:386–91.

    Article  Google Scholar 

  21. Aydaş C, Engin B, Kapan S, Komut T, Aydın T, Paksu U. Dose estimation, kinetics and dating of fossil marine mollusc shells from northwestern part of Turkey. Appl Radiat Isot. 2015;105:72–9.

    Article  Google Scholar 

  22. Schellmann G, Radtke U. Progress in ESR dating of Pleistocene corals – a new approach for D E determination. Quat Sci Rev. 2001;20:1015–20.

    Article  Google Scholar 

  23. Kabacińska Z, Krzyminiewski R, Michalska D, Dobosz B. Investigation of lime mortars and plasters from archaeological excavations in Hippos (Israel) using electron paramagnetic resonance. Geochronometria. 2014;41:112–20.

    Google Scholar 

  24. Bartoll J, Tani A. Thermal history of archaeological objects, studied by electron spin resonance. Naturwissenschaften. 1998;85:474–81.

    Article  Google Scholar 

  25. Bartoll J, Tani A, Ikeya M, Inada T. ESR investigations of burnt soil. Appl Magn Reson. 1996;11:577–86.

    Article  Google Scholar 

  26. Bensimon Y, Deroide B, Clavel S, Zanchetta J-V. Electron spin resonance and dilatometric studies of ancient ceramics applied to the determination of firing temperature. Jpn J Appl Phys. 1998;37(Part 1):4367–72.

    Article  Google Scholar 

  27. Mangueira GM, Toledo R, Teixeira S, Franco RWA. A study of the firing temperature of archeological pottery by X-ray diffraction and electron paramagnetic resonance. J Phys Chem Solids. 2011;72:90–6.

    Article  Google Scholar 

  28. Robins GV, Seeley NJ, McNeil DAC, Symons MRC. Identification of ancient heat treatment in flint artefacts by ESR spectroscopy. Nature. 1978;276:703–4.

    Article  Google Scholar 

  29. Asfora VK, Guzzo PL, Pessis A-M, Barros VSM, Watanabe S, Khoury HJ. Characterization of the burning conditions of archaeological pebbles using the thermal sensitization of the 110°C TL peak of quartz. Radiat Meas. 2014;71:485–9.

    Article  Google Scholar 

  30. Aydaş C, Engin B, Dönmez EO, Belli O. The use of ESR technique for assessment of heating temperatures of archaeological lentil samples. Spectrochim Acta Part A. 2010;75:466–73.

    Article  Google Scholar 

  31. Melkior T, Jacob S, Gerbaud G, Hediger S, Le Pape L, Bonnefois L, Bardet M. NMR analysis of the transformation of wood constituents by torrefaction. Fuel. 2012;92:271–80.

    Article  Google Scholar 

  32. Triantafyllou M, Papachristodoulou P, Pournou A. Wet charred wood: a preliminary study of the material and its conservation treatments. J Archaeol Sci. 2010;37:2277–83.

    Article  Google Scholar 

  33. Schurr MR, Hayes RG. Stable carbon- and nitrogen-isotope ratios and electron spin resonance (ESR) g-values of charred bones: changes with heating and a critical evaluation of the utility of g-values for reconstructing thermal history and original isotope ratios. J Archaeol Sci. 2008;35:2017–31.

    Article  Google Scholar 

  34. Perrette Y, Poulenard J, Protière M, Fanget B, Lombard C, Miège C, Quiers M, Nafferchoux E, Pépin-Donat B. Determining soil sources by organic matter EPR fingerprints in two modern speleothems. Org Geochem. 2015;88:59–68.

    Article  Google Scholar 

  35. Pépin-Donat B, Poulenard J, Blondel T, Lombard C, Protière M, Dudal Y, Perrette Y, Fanget B, Miège C, Delannoy J-J, Dorioz J-M, Emblanch C, Arnaud F, Guiguet-Covex C. La spectroscopie de Résonance Paramagnétique Électronique: applications. Grenoble: Presse Universitaire de Grenoble; 2014. p. 27–45.

    Google Scholar 

  36. Zoleo A, Brustolon M, Barbon A, Silvestri A, Molin G, Tonietto S. Fe(III) and Mn(II) EPR quantitation in glass fragments from the palaeo-Christian mosaic of St. Prosdocimus (Padova, NE Italy): archaeometric and colour correlations. J Cult Herit. 2015;16:322–8.

    Article  Google Scholar 

  37. Zoleo A, Nodari L, Rampazzo M, Piccinelli F, Russo U, Federici C, Brustolon M. Characterization of pigment and binder in badly conserved illuminations of a 15th-century manuscript. Archaeometry. 2014;56:496–512.

    Article  Google Scholar 

  38. Monico L, Janssens K, Cotte M, Sorace L, Vanmeert F, Brunetti BG, Miliani C. Chromium speciation methods and infrared spectroscopy for studying the chemical reactivity of lead chromate-based pigments in oil medium. Microchem J. 2016;124:272–82.

    Article  Google Scholar 

  39. Canevali C, Gentile P, Orlandi M, Modugno F, Lucejko JJ, Colombini MP, Brambilla L, Goidanich S, Riedo C, Chiantore O, Baraldi P, Baraldi C, Gamberini MC. A multi-analytical approach for the characterization of powders from the Pompeii archaeological site. Anal Bioanal Chem. 2011;401:1801–14.

    Article  Google Scholar 

  40. Bronzato M, Zoleo A, Biondi B, Centeno SA. An insight into the metal coordination and spectroscopic properties of artistic Fe and Fe/Cu logwood inks. Spectrochim Acta Part A. 2016;153:522–9.

    Article  Google Scholar 

  41. Bronzato M, Calvini P, Federici C, Dupont A-L, Meneghetti M, Di Marco V, Biondi B, Zoleo A. Degradation by-products of ancient paper leaves from wash waters. Anal Methods. 2015;7:8197–205.

    Article  Google Scholar 

  42. Bronzato M, Calvini P, Federici C, Bogialli S, Favaro G, Meneghetti M, Mba M, Brustolon M, Zoleo A. Degradation products from naturally aged paper leaves of a 16th-century-printed book: a spectrochemical study. Chem Eur J. 2013;19:9569–77.

    Article  Google Scholar 

  43. Tran K, Boumlil N, Albino C, Caillat L, Pécaut J, Bardet M, Gerbaud G, Le Pape L, Kirschner A. Characterization and conservation of a gun carriage excavated from the 17th century Stirling Castle shipwreck. In: Grimstad K, editor. ICOM-CC 16th triennal conference. Lisbon: International Council of Museums; 2011. p. 1–9.

    Google Scholar 

  44. Bardet M, Gerbaud G, Giffard M, Doan C, Hediger S, Le Pape L. 13C high-resolution solid-state NMR for structural elucidation of archaeological woods. Prog Nucl Magn Reson Spectrosc. 2009;55:199–214.

    Article  Google Scholar 

  45. Bardet M, Gerbaud G, Le Pape L, Hediger S, Trân Q-K, Boumlil N. Nuclear magnetic resonance and electron paramagnetic resonance as analytical tools to investigate structural features of archaeological leathers. Anal Chem. 2009;81:1505–11.

    Article  Google Scholar 

  46. Ciglanská M, Jančovičová V, Havlínová B, Machatová Z, Brezová V. The influence of pollutants on accelerated ageing of parchment with iron gall inks. J Cult Herit. 2014;15:373–81.

    Article  Google Scholar 

  47. Oka T, Grün R, Tani A, Yamanaka C, Ikeya M, Huang HP. ESR microscopy of fossil teeth. Radiat Meas. 1997;27:331–7.

    Article  Google Scholar 

  48. Bortolussi C, Zoleo A, Maritan L, Collauto A, Brustolon M, Marrale M, Parlato A, Usai D. Electron paramagnetic resonance and petrographic analysis for dating Mesolithic and Neolithic pottery from Al Khiday (Sudan). Radiat Meas. 2016;89:89–98.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Le Pape .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Le Pape, L. (2016). Application of EPR in Studies of Archaeological Samples. In: Webb, G. (eds) Modern Magnetic Resonance. Springer, Cham. https://doi.org/10.1007/978-3-319-28275-6_30-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28275-6_30-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28275-6

  • Online ISBN: 978-3-319-28275-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics