Skip to main content

Assessment of Cardiovascular Calcium: Interpretation, Prognostic Value, and Relationship to Lipids and Other Cardiovascular Risk Factors

  • Chapter
  • First Online:
Cardiac CT Imaging

Abstract

Coronary artery calcium scanning has proven to be the most powerful predictor of cardiac risk in the primary prevention population, far exceeding conventional risk factors in prognostic value. It has also proven superior to all markers of inflammation, ankle brachial index, carotid intima-media thickness and flow mediated vasodilation. Its most accepted application is in the intermediate risk cohort, with an outcome based net reclassification index of the Framingham Risk Score exceeding 50 %. Application to young patients with a family history of premature coronary disease and to all diabetics older than 40 years of age is also appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heart and stoke statistical update. Dallas: American Heart Association; 2001.

    Google Scholar 

  2. Blankenhorn DH, Stern D. Calcification of the coronary arteries. Am J Roentgenol. 1959;81:772–7.

    CAS  Google Scholar 

  3. Frink RJ, Achor RW, Brown AL, et al. Significance of calcification of the coronary arteries. Am J Cardiol. 1970;26:241–7.

    Article  CAS  PubMed  Google Scholar 

  4. Wexler L, Brundage B, Crouse J, et al. Coronary artery calcification: pathophysiology, epidemiology, image methods and clinical implications. A scientific statement from the American Heart Association. Circulation. 1996;94:1175–92.

    Article  CAS  PubMed  Google Scholar 

  5. Faber A. Die Arteriosklerose, from Pathologische Anatomie, from Pathogenese Und Actiologie. G. Fischer; 1912.

    Google Scholar 

  6. Bostrom K, Watson KE, Horn S, et al. Bone morphogenetic protein expression in human atherosclerotic lesions. J Clin Invest. 1993;91:1800–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ideda T, Shirasawa T, Esaki Y, et al. Osteopontin mRNA is expressed by smooth muscle-derived foam cells in human atherosclerotic lesions of the aorta. J Clin Invest. 1993;92:2814–20.

    Article  Google Scholar 

  8. Hirota S, Imakita M, Kohri K, et al. Expression of osteopontin messenger RNA by macrophages in atherosclerotic plaques. A possible association with calcification. Am J Pathol. 1993;143:1003–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Shanahan CM, Cary NR, Metcalfe JC, Weissberg PL. High expression of genes for calcification-regulating proteins in human atherosclerotic plaque. J Clin Invest. 1994;93:2393–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rumberger JA, Simons DB, Fitzpatrick LA, et al. Coronary artery calcium areas by electron beam computed tomography and coronary atherosclerotic plaque area: a histopathologic correlative study. Circulation. 1995;92:2157–62.

    Article  CAS  PubMed  Google Scholar 

  11. Baumgart D, Schmermund A, Goerge G, et al. Comparison of electron beam computed tomography with intracoronary ultrasound and coronary angiography for detection of coronary atherosclerosis. J Am Coll Cardiol. 1997;30:57–64.

    Article  CAS  PubMed  Google Scholar 

  12. Schmermund A, Baumgart D, Gorge G, et al. Coronary artery calcium in acute coronary syndromes: a comparative study of electron beam CT, coronary angiography, and intracoronary ultrasound in survivors of acute myocardial infarction and unstable angina. Circulation. 1997;96:1461–9.

    Article  CAS  PubMed  Google Scholar 

  13. Agatston AS, Janowitz WR, Hildner FJ, et al. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990;15:827–32.

    Article  CAS  PubMed  Google Scholar 

  14. Callister TQ, Cooil B, Raya SP, et al. Coronary artery disease: improved reproducibility of calcium scoring with an electron-beam CT volumetric method. Radiology. 1998;208:807–14.

    Article  CAS  PubMed  Google Scholar 

  15. Becker CR, Kleffel T, Crispin A, et al. Coronary artery calcium measurement. Agreement of multirow detector and electron beam CT. Am J Roentgenol. 2001;176:1295–8.

    Article  CAS  Google Scholar 

  16. Janowitz WR, Agatston AS, Kaplan G, Viamonte M. Differences in prevalence and extent of coronary artery calcium detected by ultrafast computed tomography in asymptomatic men and women. Am J Cardiol. 1993;72:247–54.

    Article  CAS  PubMed  Google Scholar 

  17. Hoff JA, Chomka EV, Krainik AJ, et al. Age and gender distributions of coronary artery calcium detected by electron beam tomography in 35,246 adults. Am J Cardiol. 2001;87:1335–9.

    Article  CAS  PubMed  Google Scholar 

  18. Budoff MJ, Yang TP, Shavelle RM. Ethnic differences in coronary atherosclerosis. J Am Coll Cardiol. 2002;39:408–12.

    Article  PubMed  Google Scholar 

  19. Newman AB, Naydeck BL, Whittle J, et al. Racial differences in coronary artery calcification in adults. Arterioscler Thromb Vasc Biol. 2002;22:424–30.

    Article  CAS  PubMed  Google Scholar 

  20. Khuran C, Rosenbaum CG, Howard BV, et al. Coronary artery calcification in black women and white women. Am Heart J. 2003;145:724–9.

    Article  Google Scholar 

  21. Jain T, Peshock R, Darren K, McGuire DK. African Americans and Caucasians have a similar prevalence of coronary calcium in the Dallas Heart Study. J Am Coll Cardiol. 2004;44:1011–7.

    Article  CAS  PubMed  Google Scholar 

  22. McClelland RL, Chung H, Detrano R, et al. Distribution of coronary artery calcium by race, gender, and age. Results from the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation. 2006;113:30–7.

    Article  PubMed  Google Scholar 

  23. Detrano R, Guerci AD, Carr JJ, et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med. 2008;358:1336–45.

    Article  CAS  PubMed  Google Scholar 

  24. Nasir K, Michos ED, Rumberger JA, et al. Coronary artery calcification and family history of premature coronary heart disease: sibling history is more strongly associated than parental history. Circulation. 2004;110:2150–6.

    Article  PubMed  Google Scholar 

  25. Khurram Nasir K, Budoff MJ, Wong ND, et al. Family history of premature coronary heart disease and coronary artery calcification. Multi-Ethnic Study of Atherosclerosis (MESA). Circulation. 2007;116:619–62.

    Article  PubMed  Google Scholar 

  26. Gerber TC, Carr JJ, Arai AE, et al. Ionizing radiation in cardiac imaging: a science advisory from the American Heart Association Committee on Cardiac Imaging of the Council on Clinical Cardiology and Committee on Cardiovascular Imaging and Intervention of the Council on Cardiovascular Radiology and Intervention. Circulation. 2009;119:1056–196526.

    Article  PubMed  Google Scholar 

  27. O’Rourke RA, Brundage BH, Froelicher VF, et al. American College of Cardiology/American Heart Association expert consensus document on electron beam computed tomography for the diagnosis and prognosis of coronary artery disease. Circulation. 2000;102:126–40.

    Article  PubMed  Google Scholar 

  28. Simons DB, Schwartz RS, Edwards WD, et al. Noninvasive definition of anatomic coronary disease by ultrafast computed tomographic scanning: a quantitative pathologic comparison study. J Am Coll Cardiol. 1992;20:1118–26.

    Article  CAS  PubMed  Google Scholar 

  29. Detrano R, Tang W, Kang X, et al. Accurate coronary calcium phosphate mass measurements from electron beam computed tomograms. Am J Card Imaging. 1995;9:167–73.

    CAS  PubMed  Google Scholar 

  30. Mautner GC, Mautner SL, Froelich J, et al. Coronary artery calcification: assessment with electron beam CT and histomorphometric correlation. Radiology. 1994;192:619–23.

    Article  CAS  PubMed  Google Scholar 

  31. Budoff MJ, Georgiou D, Brody A, et al. Ultrafast computed tomography as a diagnostic modality in the detection of coronary artery disease-a multicenter study. Circulation. 1996;93:898–904.

    Article  CAS  PubMed  Google Scholar 

  32. Guerci AD, Spadaro LA, Popma JJ, et al. Electron Beam tomography of the coronary arteries: relationship of coronary calcium score to arteriographic findings in asymptomatic and symptomatic adults. Am J Cardiol. 1997;79:128–33.

    Article  CAS  PubMed  Google Scholar 

  33. Shavelle DM, Budoff MJ, LaMont DH, et al. Exercise testing and electron beam computed tomography in the evaluation of coronary artery disease. J Am Coll Cardiol. 2000;36:32–8.

    Article  CAS  PubMed  Google Scholar 

  34. Bielak LF, Rumberger JA, Sheedy PF, et al. Probabilistic model for prediction of agiographically defined obstructive coronary artery disease using electron beam computed tomography calcium score strata. Circulation. 2000;102:380–5.

    Article  CAS  PubMed  Google Scholar 

  35. Rumberger JA, Sheedy PF, Breen FJ, et al. Electron beam CT coronary calcium score cutpoints and severity of associated angiography luminal stenosis. J Am Coll Cardiol. 1997;29:1542–8.

    Article  CAS  PubMed  Google Scholar 

  36. Haberl R, Becker A, Leber A, et al. Correlation of coronary calcification and angiographically documented stenoses in patients with suspected coronary artery disease: results of 1,764 patients. J Am Coll Cardiol. 2001;37:451–7.

    Article  CAS  PubMed  Google Scholar 

  37. Budoff MJ, Raggi P, Berman D, et al. Continuous probabilistic prediction of angiographically significant coronary artery disease using electron beam tomography. Circulation. 2002;105(15):1791–6.

    Article  PubMed  Google Scholar 

  38. Sarwar A, Shaw LJ, Shapiro MD, et al. Diagnostic and prognostic value of absence of coronary artery calcification. J Am Coll Cardiol Img. 2009;2:675–88.

    Article  Google Scholar 

  39. Mohlenkamp S, Lehmann N, Schmermund A, et al. Prognostic value of extensive coronary calcium quantities in symptomatic males – a 5-year follow-up study. Eur Heart J. 2003;24:845–54.

    Article  CAS  PubMed  Google Scholar 

  40. Raggi P, Callister TQ, Cooil B, et al. Identification of patients at increased risk of first unheralded acute myocardial infarction by electron beam computed tomography. Circulation. 2000;101:850–5.

    Article  CAS  PubMed  Google Scholar 

  41. Wong ND, Hsu JC, Detrano RC, et al. Coronary artery calcium evaluation by electron beam compute tomography and its relation to new cardiovascular events. Am J Cardiol. 2000;86:495–8.

    Article  CAS  PubMed  Google Scholar 

  42. Arad Y, Spadaro LA, Goodman K, et al. Prediction of coronary events with electron beam computed tomography. J Am Coll Cardiol. 2000;36:1253–60.

    Article  CAS  PubMed  Google Scholar 

  43. Kondos GT, Hoff JA, Sevrukov A, et al. Electron-beam tomography coronary artery calcium and cardiac events: a 37-month follow-up of 5,635 initially asymptomatic low to intermediate risk adults. Circulation. 2003;107:2571–6.

    Article  PubMed  Google Scholar 

  44. Shaw LJ, Raggi P, Schisterman E, et al. Prognostic value of cardiac risk factors and coronary artery calcium screening for all-cause mortality. Radiology. 2003;28:826–33.

    Article  Google Scholar 

  45. Greenland P, LaBree L, Azen SP, et al. Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. JAMA. 2004;291:210–5.

    Article  CAS  PubMed  Google Scholar 

  46. Arad Y, Goodman KJ, Roth M, et al. Coronary calcification, coronary risk factors, and atherosclerotic cardiovascular disease events. The St Francis Heart Study. J Am Coll Cardiol. 2005;46(1):158–65.

    Article  CAS  PubMed  Google Scholar 

  47. Wayhs R, Zelinger A, Raggi P. High coronary artery calcium scores pose an extremely elevated risk for hard events. J Am Coll Cardiol. 2002;39:225–30.

    Article  PubMed  Google Scholar 

  48. Taylor AJ, Bindeman J, Feuerstein I, et al. Coronary calcium independently predicts incident premature coronary heart disease over measured cardiovascular risk factors mean three-year outcomes in the prospective army C\coronary C\calcium (PACC) project. J Am Coll Cardiol. 2005;46:807–14.

    Article  CAS  PubMed  Google Scholar 

  49. Vliegenthart R, Oudkerk M, Song B, et al. Coronary calcification detected by electron-beam computed tomography and myocardial infarction. The Rotterdam Coronary Calcification Study. Eur Heart J. 2002;23:1596–603.

    Article  CAS  PubMed  Google Scholar 

  50. Budoff MJ, Shaw LJ, Liu ST, et al. Long-term prognosis associated with coronary calcification. Observations from a registry of 25,253 patients. J Am Coll Cardiol. 2007;49:1860–70.

    Article  PubMed  Google Scholar 

  51. Becker A, Leber A, Becker C, Knez A. Predictive value of coronary calcifications for future cardiac events in asymptomatic individuals. Am Heart J. 2008;155:154–60.

    Article  PubMed  Google Scholar 

  52. Folsom AR, Kronmal RA, Detrano RC, et al. Coronary artery calcification compared with carotid intima-media thickness in the prediction of cardiovascular disease incidence the Multi-Ethnic Study of Atherosclerosis (MESA). Arch Intern Med. 2008;168:1333–9.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lakoski SG, Greenland P, Wong ND, et al. Coronary artery calcium scores and risk for cardiovascular events in women classified as “Low Risk” based on Framingham risk score. The Multi-Ethnic Study of Atherosclerosis (MESA). Arch Intern Med. 2007;167(22):2437–42.

    Article  PubMed  Google Scholar 

  54. Blaha M, Budoff MJ, Shaw LJ, et al. Absence of coronary artery calcification and all-cause mortality. J Am Coll Cardiol Img. 2009;2:692–700.

    Article  Google Scholar 

  55. Erbel R, Möhlenkamp S, Moebus S, et al. Signs of subclinical coronary atherosclerosis measured as coronary artery calcification improve risk prediction of hard events beyond traditional risk factors in an unselected general population – The Heinz Nixdorf Recall Study five-year outcome data. J Am Coll Cardiol 2009;56:1397–406. In press.

    Google Scholar 

  56. Nasir K, Rubin J, Blaha MJ, Shaw LJ, et al. Interplay of coronary artery calcification and traditional risk factors for the prediction of all-cause mortality in asymptomatic individuals. Circ Cardiovasc Imaging. 2012;5:467–73.

    Article  PubMed  Google Scholar 

  57. Mascola A, Ko J, Bakhsheshi H, et al. Electron beam tomography comparison of culprit and non-culprit coronary arteries in patients with acute myocardial infarction. Am J Cardiol. 2000;85:1357–9.

    Article  CAS  PubMed  Google Scholar 

  58. Pohle K, Ropers D, Mäffert R, et al. Coronary calcifications in young patients with first, unheralded myocardial infarction: a risk factor matched analysis by electron beam tomography. Heart. 2003;89:625–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. O’Malley PG, Feuerstein IM, Taylor AJ. Impact of electron beam tomography, with or without case management, on motivation, behavioral change, and cardiovascular risk profile: a randomized controlled trial. JAMA. 2003;289:2215–23.

    Article  PubMed  Google Scholar 

  60. Kalia NK, Miller LG, Nasir K, Blumenthal RS, et al. Visualizing coronary calcium is associated with improvements in adherence to statin therapy. Atherosclerosis. 2006;185:394–9.

    Article  CAS  PubMed  Google Scholar 

  61. Orakzai RH, Nasir K, Orakzai SH, et al. Effect of patient visualization of coronary calcium by electron beam computed tomography on changes in beneficial lifestyle behaviors. Am J Cardiol. 2008;101:999–1002.

    Article  CAS  PubMed  Google Scholar 

  62. Taylor AJ, Bindeman J, Feuerstein I, et al. Community-based provision of statin and aspirin after the detection of coronary artery calcium within a community-based screening cohort. J Am Coll Cardiol. 2008;51:1337–41.

    Article  PubMed  Google Scholar 

  63. Rozanski A, Gransar H, Shaw LJ, et al. Impact of coronary artery calcium scanning on coronary risk factors and downstream testing: The EISNER (Early Identification of Subclinical Atherosclerosis by Noninvasive Imaging Research) prospective randomized trial. J Am Coll Cardiol. 2011;57:1622–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Naghavi M, Falk E, Hecht HS, et al. From vulnerable plaque to vulnerable patient—Part III: executive summary of the Screening for Heart Attack Prevention and Education (SHAPE) task force report. Am J Cardiol. 2006;98(Suppl 2A):2H–15.

    Article  PubMed  Google Scholar 

  65. Greenland P, Alpert JS, Beller GA, et al. 2010 ACCF/AHA guideline for assessment of cardiovascular risk in adults. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2010;56:e50–103.

    Article  PubMed  Google Scholar 

  66. Stone NJ, Robinson J, Lichtenstein AH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults. J Am Coll Cardiol. 2013. doi:10.1016/j.jacc.2013.11.002.

    PubMed Central  Google Scholar 

  67. Goff Jr DC, Lloyd-Jones DM, Bennett G, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk. J Am Coll Cardiol. 2013. doi:10.1016/j.jacc.2013.11.005.

    PubMed  Google Scholar 

  68. Hermann DM, Gronewold J, Lehmann N, et al. Heinz Nixdorf Recall Study Investigative Group. Coronary artery calcification is an independent stroke predictor in the general population. Stroke 2013;44:1008–13.

    Google Scholar 

  69. Yeboah J, McClelland RL, Polonsky TS, et al. Comparison of novel risk markers for improvement in cardiovascular risk assessment in intermediate-risk individuals. JAMA. 2012;308:788–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kuller LH, Matthews KA, Sutton-Tyrrell K, et al. Coronary and aortic calcification among women 8 years after menopause and their premenopausal risk factors: the Healthy Women Study. Arterioscler Thromb Vasc Biol. 1999;19:2189–98.

    Article  CAS  PubMed  Google Scholar 

  71. Hecht HS, Superko HR, Smith LK, et al. Relation of coronary artery calcium identified by electron beam tomography to serum lipoprotein levels and implications for treatment. Am J Cardiol. 2001;87:406–12.

    Article  CAS  PubMed  Google Scholar 

  72. Daviglus ML, Pirzada A, Liu K, et al. Comparison of low risk and higher risk profiles in middle age to frequency and quantity of coronary artery calcium years later. Am J Cardiol. 2004;94:367–9.

    Article  CAS  PubMed  Google Scholar 

  73. Hecht HS, Superko HR. Electron beam tomography and national cholesterol education program guidelines in asymptomatic women. J Am Coll Cardiol. 2001;37:1506–11.

    Article  CAS  PubMed  Google Scholar 

  74. Rana JS, Gransar H, Wong ND, et al. Comparative value of coronary artery calcium and multiple blood biomarkers for prognostication of cardiovascular events. Am J Cardiol. 2012;109:1449–53.

    Article  CAS  PubMed  Google Scholar 

  75. Iribarren C, Gross MD, Darbinian JA, et al. Association of lipoprotein-associated phospholipase A2 mass and activity with calcified coronary plaque in young adults. The CARDIA Study. Arterioscler Thromb Vasc Biol. 2005;25:216–21.

    CAS  PubMed  Google Scholar 

  76. O’Donnell CJ, Chazaro I, Wilson PW, et al. Evidence for heritability of abdominal aortic calcific deposits in the Framingham Heart Study. Circulation. 2002;106:337–41.

    Article  PubMed  Google Scholar 

  77. Peyser PA, Bielak LF, Chu J, et al. Heritability of coronary artery calcium quantity measured by electron beam computed tomography in asymptomatic adults. Circulation. 2002;106:304–8.

    Article  PubMed  Google Scholar 

  78. Hecht HS. Risk factors revisited. Am J Cardiol. 2003;93:73–5.

    Article  Google Scholar 

  79. Hecht HS, Budoff M, Ehrlich J, Rumberger J. Coronary artery calcium scanning: clinical recommendations for cardiac risk assessment and treatment. Am Heart J. 2006;151:1139–46.

    Article  CAS  PubMed  Google Scholar 

  80. Wilson PW, D’Agostino B, Levy D, et al. Prediction of coronary heart disease using risk factor categories. Circulation. 1998;97:1837–47.

    Article  CAS  PubMed  Google Scholar 

  81. Grundy SM, Cleeman JI, Merz CN, et al. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation. 2004;110:227–39.

    Article  PubMed  Google Scholar 

  82. Akosah K, Schaper A, Cogbill C, Schoenfeld P. Preventing myocardial infarction in the young adult in the first place: how do the National Cholesterol Education Panel III guidelines perform? J Am Coll Cardiol. 2003;41:1475–9.

    Article  PubMed  Google Scholar 

  83. Taylor A, Cerqueira M, Hodgson JM, et al. Appropriate use criteria for cardiac computed tomography. J Am Coll Cardiol. 2010;56:1864–94.

    Article  PubMed  Google Scholar 

  84. Raggi P, Shaw LJ, Berman DS, Callister TQ. Prognostic value of coronary artery calcium screening in subjects with and without diabetes. J Am Coll Cardiol. 2004;43:1663–9.

    Article  CAS  PubMed  Google Scholar 

  85. Wong ND, Sciammarella MG, Polk D, et al. The metabolic syndrome, diabetes, and subclinical atherosclerosis assessed by coronary calcium. J Am Coll Cardiol. 2003;41:1547–53.

    Article  CAS  PubMed  Google Scholar 

  86. Becker A, Leber A, Becker B, et al. Predictive value of coronary calcifications for future cardiac events in asymptomatic patients with diabetes mellitus: prospective study in 716 patients over 8 years. BMC Cardiovasc Disord. 2008;27:1–8.

    Google Scholar 

  87. Elkeles R, Godsland IF, Feher MD, et al. Coronary cal- cium measurement improves prediction of cardiovascular events in asymptomatic patients with type 2 diabetes: the PREDICT study. Eur Heart J. 2008;29:2244–51.

    Article  CAS  PubMed  Google Scholar 

  88. Anand DV, Lim E, Hopkins D, Corder R, et al. Risk stratification in uncomplicated type 2 diabetes: prospective evaluation of the combined use of coronary artery calcium imaging and selective myocardial perfusion scintigraphy. Eur Heart J. 2006;27:713–21.

    Article  PubMed  Google Scholar 

  89. Malik S, Budoff M, Katz R. Impact of subclinical atherosclerosis on cardiovascular disease events in individuals with metabolic syndrome and diabetes: the Multi-Ethnic Study of Atherosclerosis. Diabetes Care. 2011;34:2285–90.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kuller LH, Velentgas P, Barzilay J, et al. Diabetes mellitus, subclinical cardiovascular disease and risk of incident cardiovascular disease and all-cause mortality. Arterioscler Thromb Vasc Biol. 2000;20:823–9.

    Article  CAS  PubMed  Google Scholar 

  91. Min JK, Lin FY, Gidseg DS, et al. Determinants of coronary calcium conversion among patients with a normal coronary calcium scan. What is the “Warranty Period” for remaining normal? J Am Coll Cardiol. 2010;55:1110–7.

    Article  PubMed  Google Scholar 

  92. Hecht HS. A paradigm shift: coronary computed tomographic angiography before stress testing. Am J Cardiol. 2009;104(4):613–8.

    Article  PubMed  Google Scholar 

  93. He ZX, Hedrick TD, Pratt CM, et al. Severity of coronary artery calcification by electron beam computed tomography predicts silent myocardial ischemia. Circulation. 2000;101:244–51.

    Article  CAS  PubMed  Google Scholar 

  94. Moser KW, O’Keefe JH, Bateman TM, et al. Coronary calcium screening in asymptomatic patients as a guide to risk factor modification and stress myocardial perfusion imaging. J Nucl Cardiol. 2003;10:590–8.

    Article  PubMed  Google Scholar 

  95. Berman DS, Wong ND, Gransar H, et al. Relationship between stress-induced myocardial ischemia and atherosclerosis measured by coronary calcium tomography. J Am Coll Cardiol. 2004;44:923–30.

    Article  CAS  PubMed  Google Scholar 

  96. Anand DJ, Lim E, Raval U, et al. Prevalence of silent myocardial ischemia in asymptomatic individuals with subclinical atherosclerosis detected by electron beam tomography. J Nucl Cardiol. 2004;11:450–7.

    Article  PubMed  Google Scholar 

  97. Chang SM, Nabi F, Xu J, et al. The coronary artery calcium score and stress myocardial perfusion imaging provide independent and complementary prediction of cardiac risk. J Am Coll Cardiol. 2009;54:1872–82.

    Article  PubMed  Google Scholar 

  98. MacMahon H, Austin JH, Gamsu G, et al. Guidelines for management of small pulmonary nodules detected on CT scans: a statement from the Fleischner Society. Radiology. 2005;237:395–4002101.

    Article  PubMed  Google Scholar 

  99. Budoff MJ, Shavelle DM, Lamont DH, et al. Usefulness of electron beam computed tomography scanning for distinguishing ischemic from non-ischemic cardiomyopathy. J Am Coll Cardiol. 1998;32:1173–8.

    Article  CAS  PubMed  Google Scholar 

  100. Laudon DA, Vukov LF, Breen JF, et al. Use of electron-beam computed tomography in the evaluation of chest pain patients in the emergency department. Ann Emerg Med. 1999;33:15–21.

    Article  CAS  PubMed  Google Scholar 

  101. Georgiou D, Budoff MJ, Kaufer E, et al. Screening patients with chest pain in the emergency department using electron beam tomography: a follow-up study. J Am Coll Cardiol. 2001;38:105–10.

    Article  CAS  PubMed  Google Scholar 

  102. Rosen BD, Fernandes V, McClelland RL, et al. The prevalence of flow limiting stenoses in coronary arteries with previously documented zero calcium score: the Multi-Ethnic Study of Atherosclerosis (MESA). J Am Coll Cardiol Img. 2009;2:1175–83.

    Article  Google Scholar 

  103. MacHaalany J, Yeung Y, Ruddy TD, et al. Potential clinical and economic consequences of noncardiac incidental findings on cardiac computed tomography. J Am Coll Cardiol. 2009;54:1533–4.

    Article  PubMed  Google Scholar 

  104. Pletcher MJ, Pignone M, Earnshaw S, et al. Using the coronary artery calcium score to guide statin therapy: a cost-effectiveness analysis. Circ Cardiovasc Qual Outcomes. 2014;7:276–84.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Hecht HS. The Deadly double standard: the saga of screening for subclinical atherosclerosis. Am J Cardiol. 2008;101:1085–7.

    Google Scholar 

  106. Grundy SM. Is lowering low-density lipoprotein an effective strategy to reduce cardiac risk? Promise of low-density lipoprotein–lowering therapy for primary and secondary prevention. Circulation. 2008;117:569–73.

    Article  PubMed  Google Scholar 

  107. Hecht HS, Narula J. Coronary calcium in diabetes mellitus. J Diabetes. 2012;4:342–50.

    Article  CAS  PubMed  Google Scholar 

  108. Park R, Robert Detrano R, Xiang M et al. Combined use of computed tomography coronary calcium scores and C-reactive protein levels in predicting cardiovascular events in non-diabetic individuals. Circulation. 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harvey S. Hecht MD, FACC, FSSCT .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

Hecht, H.S. (2016). Assessment of Cardiovascular Calcium: Interpretation, Prognostic Value, and Relationship to Lipids and Other Cardiovascular Risk Factors. In: Budoff, M., Shinbane, J. (eds) Cardiac CT Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-28219-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28219-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28217-6

  • Online ISBN: 978-3-319-28219-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics