Skip to main content

Opportunistic Pathogens of Terrestrial Plants

  • Chapter
  • First Online:
The Rasputin Effect: When Commensals and Symbionts Become Parasitic

Part of the book series: Advances in Environmental Microbiology ((AEM,volume 3))

Abstract

Pathogens of terrestrial plants are categorized as biotrophic, hemi-biotrophic, or necrotrophic based on similarities in how they manipulate plant cells and based on when or if in the plant–microbe interaction plant cell death occurs. Biotrophic pathogens require live plant cells for infection, hemi-biotrophs require live plant cells to initiate colonization, but the plant cell eventually dies, and necrotrophs kill plant cells early in their interactions with their hosts. Pathogens in each of these categories that have arisen in multiple kingdoms and species within single genera may fall into multiple pathogen categories. The borders between these classifications are blurred and can be affected by environment and plant host species. Broad host range necrotrophic plant pathogens are sometimes referred to as opportunistic because some infect mainly damaged plants or only cause disease on harvested and stored fruits and vegetables. However, true opportunistic pathogens are rarely studied in plant pathology because they do not cause significant economic losses in agriculture. The broad host range necrotrophs may be the closest to true opportunistic pathogens. Recent mechanistic and genomic data shows that these pathogens are adept at manipulating plant defenses and subverting them to the benefit of their necrotrophic lifestyle. This subversion of conserved plant defenses likely contributes to the broad host range of these pathogens and the constant challenge of identifying resistant germplasm. Plants can also resist necrotrophic pathogens by producing antimicrobial compounds or plant cell wall modifications, but the genes encoding for these resistance mechanisms are little studied compared to canonical gene-for-gene resistance that act against biotrophic and hemi-biotrophic pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adhikari BN, Hamilton JP, Zerillo MM et al (2013) Comparative genomics reveals insight into virulence strategies of plant pathogenic oomycetes. PLoS One 8:e75072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aguilar-Trigueros CA, Powell JR, Anderson IC et al (2014) Ecological understanding of root-infecting fungi using trait-based approaches. Trends Plant Sci 19:432–438

    Article  CAS  PubMed  Google Scholar 

  • Alkan N, Fluhr R, Prusky D (2012) Ammonium secretion during Colletotrichum coccodes infection modulates salicylic and jasmonic acid pathways of ripe and unripe tomato fruit. Mol Plant Microbe Interact 25:85–96

    Article  CAS  PubMed  Google Scholar 

  • Amselem J, Cuomo CA, van Kan JAL et al (2011) Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet 7:e1002230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babujee L, Apodaca J, Balakrishnan V (2012) Evolution of the metabolic and regulatory networks associated with oxygen availability in two phytopathogenic enterobacteria. BMC Genomics 13:110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benhamou N, Le Floch G, Vallance J, Gerbore J, Grizard D, Rey P (2012) Pythium oligandrum: an example of opportunistic success. Microbiology 158:2679–2694. doi:10.1099/mic.0.061457-0

    Article  CAS  PubMed  Google Scholar 

  • Bent AF, Mackey D (2007) Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Annu Rev Phytopathol 45:399–436

    Article  CAS  PubMed  Google Scholar 

  • Berlin A, Maximenko V, Gilkes N et al (2007) Optimization of enzyme complexes for lignocellulose hydrolysis. Biotechnol Bioeng 97:287–296

    Article  CAS  PubMed  Google Scholar 

  • Brown SP, Cornforth DM, Mideo N (2012) Evolution of virulence in opportunistic pathogens: generalism, plasticity, and control. Trends Microbiol 20:336–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canessa P, Schumacher J, Hevia MA et al (2013) Assessing the effects of light on differentiation and virulence of the plant pathogen Botrytis cinerea: characterization of the white collar complex. PLoS One 8:e84223

    Article  PubMed  PubMed Central  Google Scholar 

  • Casadevall A, Pirofski LA (1999) Host-pathogen interactions: redefining the basic concepts of virulence and pathogenicity. Infect Immun 67:3703–3713

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chet I, Henis Y, Kislev N (1969) Ultrastructure of sclerotia and hyphae of Sclerotium rolfsii Sacc. J Gen Microbiol 57:143–147

    Article  Google Scholar 

  • Chung YS, Holmquist K, Spooner DM et al (2011) A test of taxonomic and biogeographic predictivity: resistance to soft rot in wild relatives of cultivated potato. Phytopathology 101:205–212

    Article  PubMed  Google Scholar 

  • Condon BJ, Wu D, KraÅ¡evec N et al (2014) Comparative genomics of Cochliobolus phytopathogens. In: Dean R, Lichens-Park A, Chitteranjan K (eds) Genomics of plant-associated fungi: monocot pathogens. Springer, New York, pp 41–67

    Google Scholar 

  • Dalmacio SC, Lugod TR, Serrano EM et al (2007) Reduced incidence of bacterial rot on transgenic insect-resistant maize in the Philippines. Plant Dis 91:346–351

    Article  Google Scholar 

  • DebRoy S, Thilmony R, Kwack YB et al (2004) A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants. Proc Natl Acad Sci U S A 101:9927–9932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demkura PV, Ballaré CL (2012) UVR8 mediates UV-B-induced Arabidopsis defense responses against Botrytis cinerea by controlling sinapate accumulation. Mol Plant 5:642–652

    Article  PubMed  Google Scholar 

  • Fiers M, Edel-Hermann V, Chatot C et al (2012) Potato soil-borne diseases. A review. Agron Sustain Dev 32:93–132

    Article  Google Scholar 

  • Govrin EM, Levine A (2000) The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr Biol 10:751–757

    Article  CAS  PubMed  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:203–227

    Article  Google Scholar 

  • Grant SR, FIsher EJ, Chang JH et al (2006) Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria. Annu Rev Microbiol 60:425–449

    Article  CAS  PubMed  Google Scholar 

  • Hirano SS, Ostertag EM, Savage SA (1997) Contribution of the regulatory gene lemA to field fitness of Pseudomonas syringae pv. syringae. Appl Environ Microbiol 63:4304–4312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hogan CS, Mole BM, Grant SR et al (2013) The type III secreted effector DspE Is required early in Solanum tuberosum leaf infection by Pectobacterium carotovorum to cause cell death, and requires Wx((3-6))D/E motifs. PLoS One 8:e65534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua J (2013) Modulation of plant immunity by light, circadian rhythm, and temperature. Curr Opin Plant Biol 16:406–413

    Article  CAS  PubMed  Google Scholar 

  • Jiang RHY, Tyler BM (2012) Mechanisms and evolution of virulence in oomycetes. Annu Rev Phytopathol 50:295–318

    Article  CAS  PubMed  Google Scholar 

  • Jolie RP, Duvetter T, Van Loey AM et al (2010) Pectin methylesterase and its proteinaceous inhibitor: a review. Carbohydr Res 345:2593–2595

    Article  Google Scholar 

  • Kabbage M, Williams B, Dickman MB (2013) Cell death control: the interplay of apoptosis and autophagy in the pathogenicity of Sclerotinia sclerotiorum. PLoS Pathog 9:e1003287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HS, Thammarat P, Lommel SA et al (2011) Pectobacterium carotovorum elicits plant cell death with DspE/F, but does not suppress callose or induce expression of plant genes early in plant-microbe interactions. Mol Plant Microbe Interact 24:773–786

    Article  CAS  PubMed  Google Scholar 

  • Kniskern JM, Barret LG, Bergelson J (2010) Maladaptation in wild populations of the generalist plant pathogen Pseudomonas syringae. Evolution 65:818–830

    Article  PubMed  PubMed Central  Google Scholar 

  • Lai Z, Wang F, Zheng Z et al (2011) A critical role of autophagy in plant resistance to necrotrophic fungal pathogens. Plant J 66:953–968

    Article  CAS  PubMed  Google Scholar 

  • Lindeberg M, Cunnac S, Collmer A (2012) Pseudomonas syringae type III effector repertoires: last words in endless arguments. Trends Microbiol 20:199–208

    Article  CAS  PubMed  Google Scholar 

  • Lionetti V, Raiola A, Camardella L et al (2007) Overexpression of pectin methylesterase inhibitors in Arabidopsis restricts fungal infection by Botrytis cinerea. Plant Physiol 143:1871–1880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorang J, Kidarsa T, Bradford CS et al (2012) Tricking the guard: exploiting plant defense for disease susceptibility. Science 338:659–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma B, Hibbing ME, Kim HS et al (2007) The host range and molecular phylogenies of the soft rot enterobacterial genera Pectobacterium and Dickeya. Phytopathology 97:1150–1163

    Article  PubMed  Google Scholar 

  • Marquez-Villavincencio M, Weber B, Witherell RA et al (2011) The 3-hydroxy-2-butanone pathway is required for Pectobacterium carotovorum pathogenesis. PLoS One 6:e22974

    Article  Google Scholar 

  • Marty P, Jouan B, Bertheau Y et al (1997) Charge density in stem cell walls of Solanum tuberosum genotypes and susceptibility to blackleg. Phytochemistry 44:1435–1441

    Article  CAS  Google Scholar 

  • McMillan GP, Perombelon MCM (1995) Purification and characterization of a high pI pectin methyl esterase isoenzyme and its inhibitor from tubers of Solanum tuberosum subsp. tuberosum cv. Katahdin. Physiol Mol Plant Pathol 46:413–427

    Article  CAS  Google Scholar 

  • Mengiste T (2012) Plant immunity to necrotrophs. Annu Rev Phytopathol 50:267–294

    Article  CAS  PubMed  Google Scholar 

  • Morris CE, Monteil CL, Berge O (2013) The life history of Pseudomonas syringae: linking agriculture to earth system processes. Annu Rev Phytopathol 51:85–104

    Article  CAS  PubMed  Google Scholar 

  • Nachin L, Barras F (2000) External pH: an environmental signal that helps to rationalize pel gene duplication in Erwinia chrysanthemi. Mol Plant Microbe Interact 13:882–886

    Article  CAS  PubMed  Google Scholar 

  • Nishiguchi M, Kobayashi K (2011) Attenuated plant viruses: preventing virus diseases and understanding the molecular mechanism. J Gen Plant Pathol 77:221–229

    Article  Google Scholar 

  • Nzyngize JR, Lyumugabe F, Busogoro JP et al (2012) Pythium root rot of common bean: biology and control methods. A review. Biotechnol Agron Soc Environ 16:405–413

    Google Scholar 

  • O’Brien HE, Thakur S, Guttman DS (2011) Evolution of plant pathogenesis in Pseudomonas syringae: a genomics perspective. Annu Rev Phytopathol 49:269–289

    Article  PubMed  Google Scholar 

  • Ottmann C, Luberacki B, Küfner I et al (2009) A common toxin fold mediates microbial attack and plant defense. Proc Natl Acad Sci U S A 106:10359–10364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prusky D, Yakoby N (2003) Pathogenic fungi: leading or led by ambient pH? Mol Plant Pathol 4:509–516

    Article  CAS  PubMed  Google Scholar 

  • Prusky D, Alkan N, Mengiste T et al (2013) Quiescent and necrotrophic lifestyle choice during postharvest disease development. Annu Rev Phytopathol 51:155–176

    Article  CAS  PubMed  Google Scholar 

  • Raiola A, Lionetti V, Elmaghraby I et al (2011) Pectin methylesterase is induced in Arabidopsis upon infection and is necessary for a successful colonization by necrotrophic pathogens. Mol Plant Microbe Interact 24:432–440

    Article  CAS  PubMed  Google Scholar 

  • Rey P, Leucart S, Desilets H, Belanger RR, Larue JP, Tirilly Y (2001) Production of indole-3-acetic acid and tryptophol by Pythium ultimum and Pythium group F: possible role in pathogenesis. Eur J Plant Pathol 107:895–904

    Article  CAS  Google Scholar 

  • Rollins JA, Dickman MB (2001) pH signaling in Sclerotinia sclerotiorum: identification of a pacC/RIM1 homolog. Appl Environ Microbiol 67:75–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy C, Kester H, Visser J et al (1999) Modes of action of five different endopectate lyases from Erwinia chrysanthemi 3937. J Bacteriol 181:3705–3709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sandler HA, Mason J (2010) Flooding to manage dodder (Cuscuta gronovii) and broad-leaved weed species in cranberry: an innovative use of a traditional strategy. Renew Agric Food Syst 25:257–262

    Article  Google Scholar 

  • Toth IK, Birch PRJ (2005) Rotting softly and stealthily. Curr Opin Plant Biol 8:424–429

    Article  CAS  PubMed  Google Scholar 

  • Williams B, Kabbage M, Kim HJ et al (2011) Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment. PLoS Pathog 7:e1002107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Zhang Q, Guo J et al (2007) Global effect of indole-3-acetic acid biosynthesis on multiple virulence factors of Erwinia chrysanthemi 3937. Appl Environ Microbiol 73:1079–1088

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy O. Charkowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Charkowski, A.O. (2016). Opportunistic Pathogens of Terrestrial Plants. In: Hurst, C. (eds) The Rasputin Effect: When Commensals and Symbionts Become Parasitic. Advances in Environmental Microbiology, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-28170-4_7

Download citation

Publish with us

Policies and ethics