Skip to main content

The Influence of Thyroid Hormone on Growth Hormone Secretion and Action

  • Chapter
  • First Online:
Growth Hormone Deficiency

Abstract

Thyroid hormone (TH) is required for normal growth hormone (GH) synthesis and secretion. Both thyroid hormone deficiency (hypothyroidism) and thyroid hormone excess (hyperthyroidism) are associated with alterations in bone development and linear growth in children. This review summarizes the current understanding of the mechanisms mediating the interaction between thyroid hormone and growth hormone, at the level of secretion and action, as well as the clinical implications. In rodent models, thyroid hormone deprivation results in reduced growth hormone mRNA levels in the pituitary, as well as reduced growth hormone-releasing hormone and growth hormone secretion. Thyroid hormone is important for a normal response to agents that stimulate GH secretion, including thyrotropin-releasing hormone and growth hormone-releasing hormone, and stimulation from exercise, starvation, and critical illness. In the few clinical studies available, prompt normalization of thyroid status generally prevents long-term impact on bone development and linear growth, but a prolonged period of time without treatment has been associated with irreversible alterations. Resistance to thyroid hormone (RTH) is a clinical syndrome classically linked to mutations in the thyroid hormone receptor β gene, TRβ. Families have recently been identified with mutations in the thyroid hormone receptor α gene, TRα. Abnormalities of growth and development are seen in both forms of RTH but are more pronounced in individuals with mutation in the TRα gene, in which growth deficits and bony deformities are key clinical features. These clinical syndromes, as well as the study of mouse models with these mutations, have resulted in the identification of key actions of thyroid hormone on bone and linear growth and have expanded our understanding of the interaction of thyroid hormone with the secretion and action of growth hormone and IGF-I.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brent GA. Regulation of gene expression by thyroid hormones; relation to growth and development. In: Kostyo JL, editor. Hormonal control of growth: handbook of physiology. New York: Oxford University Press; 1999. p. 757–82.

    Google Scholar 

  2. Scanlon MF, Issa BG, Dieguez C. Regulation of growth hormone secretion. Horm Res. 1996;46(4–5):149–54.

    Article  CAS  PubMed  Google Scholar 

  3. Murray PG, Clayton PE. Endocrine control of growth. Am J Med Genet C Semin Med Genet. 2013;163C(2):76–85.

    Article  PubMed  Google Scholar 

  4. Cheng SY, Leonard JL, Davis PJ. Molecular aspects of thyroid hormone actions. Endocr Rev. 2010;31(2):139–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brent GA. Mechanisms of thyroid hormone action. J Clin Invest. 2012;122(9):3035–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Williams GR. Neurodevelopmental and neurophysiological actions of thyroid hormone. J Neuroendocrinol. 2008;20(6):784–94.

    Article  CAS  PubMed  Google Scholar 

  7. Chiamolera MI, Wondisford FE. Minireview: thyrotropin-releasing hormone and the thyroid hormone feedback mechanism. Endocrinology. 2009;150(3):1091–6.

    Article  CAS  PubMed  Google Scholar 

  8. Astapova I, Vella KR, Ramadoss P, Holtz KA, Rodwin BA, Liao XH, et al. The nuclear receptor corepressor (NCoR) controls thyroid hormone sensitivity and the set point of the hypothalamic-pituitary-thyroid axis. Mol Endocrinol. 2011;25(2):212–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brent GA, Williams GR, Harney JW, Forman BM, Samuels HH, Moore DD, et al. Effects of varying the position of thyroid hormone response elements within the rat growth hormone promoter: implications for positive and negative regulation by 3,5,3′-triiodothyronine. Mol Endocrinol. 1991;5(4):542–8.

    Article  CAS  PubMed  Google Scholar 

  10. Koenig RJ, Brent GA, Warne RL, Larsen PR, Moore DD. Thyroid hormone receptor binds to a site in the rat growth hormone promoter required for induction by thyroid hormone. Proc Natl Acad Sci U S A. 1987;84(16):5670–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brent GA, Harney JW, Moore DD, Larsen PR. Multihormonal regulation of the human, rat, and bovine growth hormone promoters: differential effects of 3′,5′-cyclic adenosine monophosphate, thyroid hormone, and glucocorticoids. Mol Endocrinol. 1988;2(9):792–8.

    Article  CAS  PubMed  Google Scholar 

  12. Gereben B, Zavacki AM, Ribich S, Kim BW, Huang SA, Simonides WS, et al. Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr Rev. 2008;29(7):898–938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Refetoff S, Dumitrescu AM. Syndromes of reduced sensitivity to thyroid hormone: genetic defects in hormone receptors, cell transporters and deiodination. Best Pract Res Clin Endocrinol Metab. 2007;21(2):277–305.

    Article  CAS  PubMed  Google Scholar 

  14. Bernal J, Guadaño-Ferraz A, Morte B. Thyroid hormone transporters-functions and clinical implications. Nat Rev Endocrinol. 2015 Dec;11(12):690.

    Google Scholar 

  15. Luongo C, Trivisano L, Alfano F, Salvatore D. Type 3 deiodinase and consumptive hypothyroidism: a common mechanism for a rare disease. Front Endocrinol (Lausanne). 2013;4:115.

    Google Scholar 

  16. Mayerl S, Müller J, Bauer R, Richert S, Kassmann CM, Darras VM, et al. Transporters MCT8 and OATP1C1 maintain murine brain thyroid hormone homeostasis. J Clin Invest. 2014;124(5):1987–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dumitrescu AM, Liao XH, Best TB, Brockmann K, Refetoff S. A novel syndrome combining thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene. Am J Hum Genet. 2004;74(1):168–75.

    Article  CAS  PubMed  Google Scholar 

  18. Verge CF, Konrad D, Cohen M, Di Cosmo C, Dumitrescu AM, Marcinkowski T, et al. Diiodothyropropionic acid (DITPA) in the treatment of MCT8 deficiency. J Clin Endocrinol Metab. 2012;97(12):4515–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Giustina A, Wehrenberg WB. Influence of thyroid hormones on the regulation of growth hormone secretion. Eur J Endocrinol. 1995;133(6):646–53.

    Article  CAS  PubMed  Google Scholar 

  20. Korytko AI, Cuttler L. Thyroid hormone and glucocorticoid regulation of pituitary growth hormone-releasing hormone receptor gene expression. J Endocrinol. 1997;152(2):R13–7.

    Article  CAS  PubMed  Google Scholar 

  21. Downs TR, Chomczynski P, Frohman LA. Effects of thyroid hormone deficiency and replacement on rat hypothalamic growth hormone (GH)-releasing hormone gene expression in vivo are mediated by GH. Mol Endocrinol. 1990;4(3):402–8.

    Article  CAS  PubMed  Google Scholar 

  22. Martial JA, Seeburg PH, Guenzi D, Goodman HM, Baxter JD. Regulation of growth hormone gene expression: synergistic effects of thyroid and glucocorticoid hormones. Proc Natl Acad Sci U S A. 1977;74(10):4293–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kamegai J, Tamura H, Ishii S, Sugihara H, Wakabayashi I. Thyroid hormones regulate pituitary growth hormone secretagogue receptor gene expression. J Neuroendocrinol. 2001;13(3):275–8.

    Article  CAS  PubMed  Google Scholar 

  24. Forhead AJ, Li J, Saunders JC, Dauncey MJ, Gilmour RS, Fowden AL. Control of ovine hepatic growth hormone receptor and insulin-like growth factor I by thyroid hormones in utero. Am J Physiol Endocrinol Metab. 2000;278(6):E1166–74.

    CAS  PubMed  Google Scholar 

  25. Richards GE, Morrow DA, Thominet JL, Silverman BL, Gluckman PD. The effect of thyroidectomy on growth hormone regulation in the ovine fetus. J Dev Physiol. 1993;19(4):165–9.

    CAS  PubMed  Google Scholar 

  26. Wang L, Shao YY, Ballock RT. Thyroid hormone-mediated growth and differentiation of growth plate chondrocytes involves IGF-I modulation of beta-catenin signaling. J Bone Miner Res. 2010;25(5):1138–46.

    Article  CAS  PubMed  Google Scholar 

  27. Lui JC, Nilsson O, Baron J. Growth plate senescence and catch-up growth. Endocr Dev. 2011;21:23–9.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Endo T, Kobayashi T. Excess TSH causes abnormal skeletal development in young mice with hypothyroidism via suppressive effects on the growth plate. Am J Physiol Endocrinol Metab. 2013;305(5):E660–6.

    Article  CAS  PubMed  Google Scholar 

  29. Williams GR. Thyroid hormone actions in cartilage and bone. Eur Thyroid J. 2013;2(1):3–13.

    CAS  PubMed  Google Scholar 

  30. Latimer AM, Hausman GJ, McCusker RH, Buonomo FC. The effects of thyroxine on serum and tissue concentrations of insulin-like growth factors (IGF-I and -II) and IGF-binding proteins in the fetal pig. Endocrinology. 1993;133(3):1312–9.

    CAS  PubMed  Google Scholar 

  31. Mesiano S, Young IR, Baxter RC, Hintz RL, Browne CA, Thorburn GD. Effect of hypophysectomy with and without thyroxine replacement on growth and circulating concentrations of insulin-like growth factors I and II in the fetal lamb. Endocrinology. 1987;120(5):1821–30.

    Article  CAS  PubMed  Google Scholar 

  32. Bassett JH, Boyde A, Zikmund T, Evans H, Croucher PI, Zhu X, et al. Thyroid hormone receptor α mutation causes a severe and thyroxine-resistant skeletal dysplasia in female mice. Endocrinology. 2014;155(9):3699–712.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Göthe S, Wang Z, Ng L, Kindblom JM, Barros AC, Ohlsson C, et al. Mice devoid of all known thyroid hormone receptors are viable but exhibit disorders of the pituitary-thyroid axis, growth, and bone maturation. Genes Dev. 1999;13(10):1329–41.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Vakili H, Jin Y, Nagy JI, Cattini PA. Transgenic mice expressing the human growth hormone gene provide a model system to study human growth hormone synthesis and secretion in non-tumor-derived pituitary cells: differential effects of dexamethasone and thyroid hormone. Mol Cell Endocrinol. 2011;345(1-2):48–57.

    Article  CAS  PubMed  Google Scholar 

  35. Valcavi R, Zini M, Portioli I. Thyroid hormones and growth hormone secretion. J Endocrinol Invest. 1992;15(4):313–30.

    Article  CAS  PubMed  Google Scholar 

  36. Kitauchi S, Yamanouchi H, Hirano N, Toné S, Shiino M. Effect of neonatal thyroidectomy on growth hormone secretion in the rat. J Endocrinol. 1998;157(2):245–50.

    Article  CAS  PubMed  Google Scholar 

  37. Montes A, Hervás F, Jolin T. Effects of thyroidectomy and thyroxine on plasma growth hormone and insulin levels in rats. Horm Res. 1977;8(3):148–58.

    Article  CAS  PubMed  Google Scholar 

  38. Ezzat S, Laks D, Oster J, Melmed S. Growth hormone regulation in primary fetal and neonatal rat pituitary cell cultures: the role of thyroid hormone. Endocrinology. 1991;128(2):937–43.

    Article  CAS  PubMed  Google Scholar 

  39. Varela C, Cacicedo L, Fernández G, de los Frailes T, Sánchez Franco F. Influence of hypothyroidism duration on developmental changes in the hypothalamic factors implicated in growth hormone secretion in the male rat. Neuroendocrinology. 1991;54(4):340–5.

    Article  CAS  PubMed  Google Scholar 

  40. Tsai JS, Samuels HH. Thyroid hormone action: stimulation of growth hormone and inhibition of prolactin secretion in cultured GH1 cells. Biochem Biophys Res Commun. 1974;59(1):420–8.

    Article  CAS  PubMed  Google Scholar 

  41. Root AW, Shulman D, Root J, Diamond F. The interrelationships of thyroid and growth hormones: effect of growth hormone releasing hormone in hypo- and hyperthyroid male rats. Acta Endocrinol Suppl (Copenh). 1986;279:367–75.

    CAS  Google Scholar 

  42. Jones PM, Burrin JM, Ghatei MA, O’Halloran DJ, Legon S, Bloom SR. The influence of thyroid hormone status on the hypothalamo-hypophyseal growth hormone axis. Endocrinology. 1990;126(3):1374–9.

    Article  CAS  PubMed  Google Scholar 

  43. Martin D, Epelbaum J, Bluet-Pajot MT, Prelot M, Kordon C, Durand D. Thyroidectomy abolishes pulsatile growth hormone secretion without affecting hypothalamic somatostatin. Neuroendocrinology. 1985;41(6):476–81.

    Article  CAS  PubMed  Google Scholar 

  44. Bruhn TO, McFarlane MB, Deckey JE, Jackson IM. Analysis of pulsatile secretion of thyrotropin and growth hormone in the hypothyroid rat. Endocrinology. 1992;131(6):2615–21.

    CAS  PubMed  Google Scholar 

  45. De Gennaro V, Cella SG, Bassetti M, Rizzi R, Cocchi D, Muller EE. Impaired growth hormone secretion in neonatal hypothyroid rats: hypothalamic versus pituitary component. Proc Soc Exp Biol Med. 1988;187(1):99–106.

    Article  PubMed  Google Scholar 

  46. Walker P, Dussault JH. Hypothalamic somatostatin and pituitary and serum growth hormone concentrations during postnatal development in rats exposed chronically to propylthiouracil or a low iodine diet. J Dev Physiol. 1980;2(3):111–7.

    CAS  PubMed  Google Scholar 

  47. Chang YJ, Hwu CM, Yeh CC, Wang PS, Wang SW. Effects of subacute hypothyroidism on metabolism and growth-related molecules. Molecules. 2014;19(8):11178–95.

    Article  PubMed  Google Scholar 

  48. Szabo M, Stachura ME, Paleologos N, Bybee DE, Frohman LA. Thyrotropin-releasing hormone stimulates growth hormone release from the anterior pituitary of hypothyroid rats in vitro. Endocrinology. 1984;114(4):1344–51.

    Article  CAS  PubMed  Google Scholar 

  49. Welsh JB, Cuttler L, Szabo M. Ontogeny of the in vitro growth hormone stimulatory effect of thyrotropin-releasing hormone in the rat. Endocrinology. 1986;119(5):2368–75.

    Article  CAS  PubMed  Google Scholar 

  50. Chihara K, Kato Y, Ohgo S, Iwasaki Y, Maeda K. Effects of hyperthyroidism and hypothyroidism on rat growth hormone release induced by thyrotropin-releasing hormone. Endocrinology. 1976;98(6):1396–400.

    Article  CAS  PubMed  Google Scholar 

  51. Kühn ER, Geelissen SM, Van der Geyten S, Darras VM. The release of growth hormone (GH): relation to the thyrotropic- and corticotropic axis in the chicken. Domest Anim Endocrinol. 2005;29(1):43–51.

    Article  PubMed  Google Scholar 

  52. Scanes CG, Denver RJ, Bowen SJ. Effect of thyroid hormones on growth hormone secretion in broiler chickens. Poult Sci. 1986;65(2):384–90.

    Article  CAS  PubMed  Google Scholar 

  53. Harvey S, Scanes CG, Klandorf H. Thyrotropin-releasing hormone induces growth hormone secretion in adult hypothyroid fowl. Gen Comp Endocrinol. 1988;69(2):233–7.

    Article  CAS  PubMed  Google Scholar 

  54. Denver RJ, Harvey S. Thyroidal inhibition of chicken pituitary growth hormone: alterations in secretion and accumulation of newly synthesized hormone. J Endocrinol. 1991;131(1):39–48.

    Article  CAS  PubMed  Google Scholar 

  55. Porter TE, Dean KJ. Regulation of chicken embryonic growth hormone secretion by corticosterone and triiodothyronine: evidence for a negative synergistic response. Endocrine. 2001;14(3):363–8.

    Article  CAS  PubMed  Google Scholar 

  56. Martins MC, Knobel M, Medeiros-Neto G. Decreased growth hormone (GH) response to oral clonidine in endemic cretinism: effect of L-T3 therapy. J Endocrinol Invest. 1988;11(7):477–81.

    Article  CAS  PubMed  Google Scholar 

  57. Velardo A, Zizzo G, Della Casa L, Coletta F, Pantaleoni M, Marrama P, et al. Effects of thyroid hormone status on the growth hormone responses to clonidine. Exp Clin Endocrinol. 1993;101(4):243–8.

    Article  CAS  PubMed  Google Scholar 

  58. Pimentel-Filho FR, Ramos-Dias JC, Ninno FB, Façanha CF, Liberman B, Lengyel AM. Growth hormone responses to GH-releasing peptide (GHRP-6) in hypothyroidism. Clin Endocrinol (Oxf). 1997;46(3):295–300.

    Article  CAS  Google Scholar 

  59. Ignacio DL, da Silvestre SDH, Cavalcanti-de-Albuquerque JP, Louzada RA, Carvalho DP, Werneck-de-Castro JP. Thyroid hormone and estrogen regulate exercise-induced growth hormone release. PLoS One. 2015;10(4), e0122556.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Silva FG, Giannocco G, Santos MF, Nunes MT. Thyroid hormone induction of actin polymerization in somatotrophs of hypothyroid rats: potential repercussions in growth hormone synthesis and secretion. Endocrinology. 2006;147(12):5777–85.

    Article  PubMed  Google Scholar 

  61. Wood DF, Franklyn JA, Docherty K, Ramsden DB, Sheppard MC. The effect of thyroid hormones on growth hormone gene expression in vivo in rats. J Endocrinol. 1987;112(3):459–63.

    Article  CAS  PubMed  Google Scholar 

  62. Mulchahey JJ, Di Blasio AM, Jaffe RB. Effects of growth hormone (GH)-releasing hormone and somatostatin on GH secretion from individual human and monkey fetal anterior pituitary cells: modulation by thyroid hormones and glucocorticoids. J Clin Endocrinol Metab. 1988;66(2):395–401.

    Article  CAS  PubMed  Google Scholar 

  63. Fortunato RS, Ignácio DL, Padron AS, Peçanha R, Marassi MP, Rosenthal D, et al. The effect of acute exercise session on thyroid hormone economy in rats. J Endocrinol. 2008;198(2):347–53.

    Article  CAS  PubMed  Google Scholar 

  64. Marin G, Domené HM, Barnes KM, Blackwell BJ, Cassorla FG, Cutler GB. The effects of estrogen priming and puberty on the growth hormone response to standardized treadmill exercise and arginine-insulin in normal girls and boys. J Clin Endocrinol Metab. 1994;79(2):537–41.

    CAS  PubMed  Google Scholar 

  65. Rodriguez M, Rodriguez F, Jolin T. Effect of restricted feeding, fasting, and diabetes on the relationship between thyroid hormone receptor occupancy, growth hormone induction, and inhibition of thyrotropin release in thyroidectomized rats. Endocrinology. 1992;131(4):1612–8.

    CAS  PubMed  Google Scholar 

  66. Douyon L, Schteingart DE. Effect of obesity and starvation on thyroid hormone, growth hormone, and cortisol secretion. Endocrinol Metab Clin North Am. 2002;31(1):173–89.

    Article  CAS  PubMed  Google Scholar 

  67. Coiro V, Volpi R, Capretti L, Speroni G, Marchesi C, Vescovi PP, et al. Influence of thyroid status on the paradoxical growth hormone response to thyrotropin-releasing hormone in human obesity. Metabolism. 1994;43(4):514–7.

    Article  CAS  PubMed  Google Scholar 

  68. Colao A, Merola B, Ferone D, Calabrese MR, Longobardi S, Spaziante R, et al. Effect of corticotrophin-releasing hormone administration on growth hormone levels in acromegaly: in vivo and in vitro studies. Eur J Endocrinol. 1994;131(1):14–9.

    Article  CAS  PubMed  Google Scholar 

  69. Barbarino A, Corsello SM, Tofani A, Sciuto R, Della Casa S, Rota CA, et al. Corticotropin-releasing hormone inhibition of paradoxical growth hormone response to thyrotropin-releasing hormone in insulin-dependent diabetics. Metabolism. 1992;41(9):949–53.

    Article  CAS  PubMed  Google Scholar 

  70. Prager D, Weber MM, Gebremedhin S, Melmed S. Interaction between insulin and thyroid hormone in rat pituitary tumour cells: insulin attenuates tri-iodothyronine-induced growth hormone mRNA levels. J Endocrinol. 1993;137(1):107–14.

    Article  CAS  PubMed  Google Scholar 

  71. Debaveye Y, Ellger B, Mebis L, Van Herck E, Coopmans W, Darras V, et al. Tissue deiodinase activity during prolonged critical illness: effects of exogenous thyrotropin-releasing hormone and its combination with growth hormone-releasing peptide-2. Endocrinology. 2005;146(12):5604–11.

    Article  CAS  PubMed  Google Scholar 

  72. Weekers F, Michalaki M, Coopmans W, Van Herck E, Veldhuis JD, Darras VM, et al. Endocrine and metabolic effects of growth hormone (GH) compared with GH-releasing peptide, thyrotropin-releasing hormone, and insulin infusion in a rabbit model of prolonged critical illness. Endocrinology. 2004;145(1):205–13.

    Article  CAS  PubMed  Google Scholar 

  73. Van den Berghe G, Wouters P, Weekers F, Mohan S, Baxter RC, Veldhuis JD, et al. Reactivation of pituitary hormone release and metabolic improvement by infusion of growth hormone-releasing peptide and thyrotropin-releasing hormone in patients with protracted critical illness. J Clin Endocrinol Metab. 1999;84(4):1311–23.

    PubMed  Google Scholar 

  74. Chernausek SD, Underwood LE, Utiger RD, Van Wyk JJ. Growth hormone secretion and plasma somatomedin-C in primary hypothyroidism. Clin Endocrinol (Oxf). 1983;19(3):337–44.

    Article  CAS  Google Scholar 

  75. Valcavi R, Jordan V, Dieguez C, John R, Manicardi E, Portioli I, et al. Growth hormone responses to GRF 1-29 in patients with primary hypothyroidism before and during replacement therapy with thyroxine. Clin Endocrinol (Oxf). 1986;24(6):693–8.

    Article  CAS  Google Scholar 

  76. Dong Q, Gong CX, Gu Y, Su C. A new mutation in the thyroid hormone receptor gene of a Chinese family with resistance to thyroid hormone. Chin Med J (Engl). 2011;124(12):1835–9.

    CAS  Google Scholar 

  77. Tylki-Szymańska A, Acuna-Hidalgo R, Krajewska-Walasek M, Lecka-Ambroziak A, Steehouwer M, Gilissen C, et al. Thyroid hormone resistance syndrome due to mutations in the thyroid hormone receptor α gene (THRA). J Med Genet. 2015;52(5):312–6.

    Article  PubMed  Google Scholar 

  78. van Mullem AA, Chrysis D, Eythimiadou A, Chroni E, Tsatsoulis A, de Rijke YB, et al. Clinical phenotype of a new type of thyroid hormone resistance caused by a mutation of the TRα1 receptor: consequences of LT4 treatment. J Clin Endocrinol Metab. 2013;98(7):3029–38.

    Article  PubMed  Google Scholar 

  79. Williams T, Maxon H, Thorner MO, Frohman LA. Blunted growth hormone (GH) response to GH-releasing hormone in hypothyroidism resolves in the euthyroid state. J Clin Endocrinol Metab. 1985;61(3):454–6.

    Article  CAS  PubMed  Google Scholar 

  80. Nishi Y, Hamamoto K, Kajiyama M, Fujita A, Kawamura I, Kagawa Y, et al. Pituitary enlargement, hypertrichosis and blunted growth hormone secretion in primary hypothyroidism. Acta Paediatr Scand. 1989;78(1):136–40.

    Article  CAS  PubMed  Google Scholar 

  81. Sack J, Shafrir Y, Urbach D, Amado O. Thyroid-stimulating hormone, prolactin, and growth hormone response to thyrotropin-releasing hormone in treated children with congenital hypothyroidism. Pediatr Res. 1985;19(10):1037–9.

    Article  CAS  PubMed  Google Scholar 

  82. Soliman AT, Omar M, El Awwa A, Rizk MM, El Alaily RK, Bedair EM. Linear growth, growth-hormone secretion and IGF-I generation in children with neglected hypothyroidism before and after thyroxine replacement. J Trop Pediatr. 2008;54(5):347–9.

    Article  PubMed  Google Scholar 

  83. Rivkees SA, Bode HH, Crawford JD. Long-term growth in juvenile acquired hypothyroidism: the failure to achieve normal adult stature. N Engl J Med. 1988;318(10):599–602.

    Article  CAS  PubMed  Google Scholar 

  84. Je D, Am E, Pa B. Thyroid function in a goiter endemic. V. Mechanism of thyroid failure in the Uele endemic cretins. J Clin Endocrinol Metab. 1963;23:847–60.

    Article  Google Scholar 

  85. Boersma B, Otten BJ, Stoelinga GB, Wit JM. Catch-up growth after prolonged hypothyroidism. Eur J Pediatr. 1996;155(5):362–7.

    Article  CAS  PubMed  Google Scholar 

  86. Salerno M, Micillo M, Di Maio S, Capalbo D, Ferri P, Lettiero T, et al. Longitudinal growth, sexual maturation and final height in patients with congenital hypothyroidism detected by neonatal screening. Eur J Endocrinol. 2001;145(4):377–83.

    Article  CAS  PubMed  Google Scholar 

  87. Morin A, Guimarey L, Apezteguía M, Ansaldi M, Santucci Z. Linear growth in children with congenital hypothyroidism detected by neonatal screening and treated early: a longitudinal study. J Pediatr Endocrinol Metab. 2002;15(7):973–7.

    Article  CAS  PubMed  Google Scholar 

  88. Dickerman Z, De Vries L. Prepubertal and pubertal growth, timing and duration of puberty and attained adult height in patients with congenital hypothyroidism (CH) detected by the neonatal screening programme for CH--a longitudinal study. Clin Endocrinol (Oxf). 1997;47(6):649–54.

    Article  CAS  Google Scholar 

  89. Quintos JB, Salas M. Use of growth hormone and gonadotropin releasing hormone agonist in addition to L-thyroxine to attain normal adult height in two patients with severe Hashimoto's thyroiditis. J Pediatr Endocrinol Metab. 2005;18(5):515–21.

    Article  CAS  PubMed  Google Scholar 

  90. Lee JK, Zhu YS, Cordero JJ, Cai LQ, Labour I, Herrera C, et al. Long-term growth hormone therapy in adulthood results in significant linear growth in siblings with a PROP-1 gene mutation. J Clin Endocrinol Metab. 2004;89(10):4850–6.

    Article  CAS  PubMed  Google Scholar 

  91. Brown MR, Parks JS, Adess ME, Rich BH, Rosenthal IM, Voss TC, et al. Central hypothyroidism reveals compound heterozygous mutations in the Pit-1 gene. Horm Res. 1998;49(2):98–102.

    Article  CAS  PubMed  Google Scholar 

  92. Kvistad PH, Løvås K, Boman H, Myking OL. Retarded bone growth in thyroid hormone resistance. A clinical study of a large family with a novel thyroid hormone receptor mutation. Eur J Endocrinol. 2004;150(4):425–30.

    Article  CAS  PubMed  Google Scholar 

  93. Moran C, Agostini M, Visser WE, Schoenmakers E, Schoenmakers N, Offiah AC, et al. Resistance to thyroid hormone caused by a mutation in thyroid hormone receptor (TR)α1 and TRα2: clinical, biochemical, and genetic analyses of three related patients. Lancet Diabetes Endocrinol. 2014;2(8):619–26.

    Article  CAS  PubMed  Google Scholar 

  94. Smyczyńska J, Stawerska R, Lewiński A, Hilczer M. Do IGF-I concentrations better reflect growth hormone (GH) action in children with short stature than the results of GH stimulating tests? Evidence from the simultaneous assessment of thyroid function. Thyroid Res. 2011;4(1):6.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Quevedo MF, Pironis B, Palese T, Counts DR, De Luca F. TSH secretory pattern and thyroid function in children with growth hormone neurosecretory dysfunction. J Pediatr Endocrinol Metab. 2002;15(4):377–80.

    Article  CAS  PubMed  Google Scholar 

  96. Portes ES, Oliveira JH, MacCagnan P, Abucham J. Changes in serum thyroid hormones levels and their mechanisms during long-term growth hormone (GH) replacement therapy in GH deficient children. Clin Endocrinol (Oxf). 2000;53(2):183–9.

    Article  CAS  Google Scholar 

  97. Susperreguy S, Muñoz L, Tkalenko NY, Mascanfroni ID, Alamino VA, Montesinos MM, et al. Growth hormone treatment in children with idiopathic short stature: correlation of growth response with peripheral thyroid hormone action. Clin Endocrinol (Oxf). 2011;74(3):346–53.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Supported by NIH K23HD068552 (AML), NIH RO1 DK98576 (GAB), and VA Merit Review (GAB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela M. Leung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Leung, A.M., Brent, G.A. (2016). The Influence of Thyroid Hormone on Growth Hormone Secretion and Action. In: Cohen, L. (eds) Growth Hormone Deficiency. Springer, Cham. https://doi.org/10.1007/978-3-319-28038-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28038-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28036-3

  • Online ISBN: 978-3-319-28038-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics