Skip to main content

X-Ray Outflows of Active Galactic Nuclei Warm Absorbers: A 900 ks Chandra Simulated Spectrum

  • Conference paper
  • First Online:
Recent Advances in Fluid Dynamics with Environmental Applications

Part of the book series: Environmental Science and Engineering ((ENVENG))

Abstract

We report on the performance of the statistical X-ray absorption lines identification procedure xline-id. As illustration, it is used to estimate the time averaged gas density \(n_H(r)\) of a representative AGN’s warm absorber (\(T\approx 10^5\) K) X-ray simulated spectrum. The method relies on three key ingredients: (1) a well established emission continuum level; (2) a robust grid of photoionization models spanning several orders of magnitude in gas density (\(n_H\)), plasma column density (\(N_H\)), and in ionization states; (3) theoretical curves of growth for a large set of atomic lines. By comparing theoretical and observed equivalent widths of a large set of lines, spanning highly ionized charge states from O, Ne, Mg, Si, S, Ar, and the Fe L-shell and K-shell, we are able to infer the location of the X-ray warm absorber.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Computed using the code xstar and described in more detail in the section Models: The grid.

  2. 2.

    We refer also as the unabsorbed emission continuum from the primary source as seen by the absorber (dashed line in the figures).

  3. 3.

    https://heasarc.gsfc.nasa.gov/docs/software/xstar/xstar.html.

References

  • Badnell NR (2006) Dielectronic recombination of Fe 3p\(^{q}\) Ions: a key ingredient for describing x-ray absorption in active galactic nuclei. Astrophys J Lett 651:L73–L76. doi:10.1086/509739

    Article  Google Scholar 

  • Bahcall JN, Kozlovsky B-Z (1969) Some models for the emission-line region of 3c 48. Astrophys J 158:529. doi:10.1086/150216

    Article  Google Scholar 

  • Bautista MA, Kallman TR (2001) The XSTAR atomic database. Astrophys J S. 134:139–149

    Google Scholar 

  • García J, Mendoza C, Bautista MA, Gorczyca TW, Kallman TR, Palmeri P (2005) K-Shell Photoabsorption of oxygen ions. Astrophysl J S. 158:68–79. doi:10.1086/428712

  • García J, Ramírez JM, Kallman TR, Witthoeft M, Bautista MA, Mendoza C, Palmeri P, Quinet P (2011) Modeling the oxygen K absorption in the interstellar medium: an XMM-Newton view of Sco X-1. Astrophys J Lett 731:L15. doi:10.1088/2041-8205/731/1/L15

  • Grevesse N, Noels A, Sauval AJ (1996) Standard Abundances. In: Astronomical Society of the Pacific Conference Series, p 117

    Google Scholar 

  • Holczer T, Behar E, Kaspi S (2007) Absorption Measure Distribution of the Outflow in IRAS 13349+2438: Direct Observation of Thermal Instability? Astrophys J 663:799–807. doi:10.1086/518416

    Article  Google Scholar 

  • Kallman TR (2010) Modeling of photoionized plasmas. Space Sci Rev 157:177–191. doi:10.1007/s11214-010-9711-6

    Article  Google Scholar 

  • Kallman T, Bautista M (2001) Photoionization and high-density gas. Astrophys J S 133:221–253

    Google Scholar 

  • Kaspi S, Brandt WN, George IM, Netzer H, Crenshaw DM, Gabel JR, Hamann FW, Kaiser ME, Koratkar A, Kraemer SB, Kriss GA, Mathur S, Mushotzky RF, Nandra K, Peterson BM, Shields JC, Turner TJ, Zheng W (2002) The ionized gas and nuclear environment in NGC 3783. I. Time-averaged 900 Kilosecond Chandra grating spectroscopy. Astrophys J 574:643–662

    Article  Google Scholar 

  • Krongold Y, Nicastro F, Brickhouse NS, Elvis M, Liedahl DA, Mathur S (2003) Toward a Self-Consistent Model of the Ionized Absorber in NGC 3783. Astrophys J 597:832–850

    Article  Google Scholar 

  • Netzer H, Kaspi S, Behar E, Brandt WN, Chelouche D, George IM, Crenshaw DM, Gabel JR, Hamann FW, Kraemer SB, Kriss GA, Nandra K, Peterson BM, Shields JC, Turner TJ (2003) The ionized gas and nuclear environment in NGC 3783. IV. Variability and modeling of the 900 Kilosecond Chandra spectrum. Astrophys J 599:933–948. doi:10.1086/379508

    Article  Google Scholar 

  • Palmeri P, Mendoza C, Kallman TR, Bautista MA (2002) On the Structure of the Iron K Edge. Astrophys J Lett 577:L119–L122. doi:10.1086/344243

    Article  Google Scholar 

  • Palmeri P, Mendoza C, Kallman TR, Bautista MA (2003a) A complete set of radiative and Auger rates for K-vacancy states in Fe XVIII-Fe XXV. A&A 403:1175–1184. doi:10.1051/0004-6361:20030405

    Article  Google Scholar 

  • Palmeri P, Mendoza C, Kallman TR, Bautista MA, Meléndez M (2003b) Modeling of iron K lines: Radiative and Auger decay data for Fe II-Fe IX. A&A 410:359–364. doi:10.1051/0004-6361:20031262

    Article  Google Scholar 

  • Palmeri P, Quinet P, Mendoza C, Bautista MA, García J, Kallman TR (2008) Radiative and Auger Decay of K-Vacancy Levels in the Ne, Mg, Si, S, Ar, and Ca Isonuclear Sequences. Astrophys J S. 177:408–416. doi:10.1086/587804

  • Pérez LF, Ramírez JM (2014) Statistical Methods for the Detection of Flows in Active Galactic Nuclei Using X-Ray Spectral Lines. Sigalotti L, Klapp J, Sira E (eds) Computational and Experimental Fluid Mechanics with Applications to Physics, Engineering and the Environment. Springer International AG, pp 521

    Google Scholar 

  • Ramírez JM (2008) Physical and kinematical properties of the X-ray absorber in the broad absorption line quasar APM 08279+5255. A&A 489:57–68. doi:10.1051/0004-6361:200810264

    Article  Google Scholar 

  • Ramírez JM (2011) Kinematics from spectral lines for AGN outflows based on time-independent radiation-driven wind theory. Rev Mexicana Astron. Astrofis 47:385–399

    Google Scholar 

  • Ramírez JM (2013) Chandra LETGS observation of the variable NLS1 galaxy Ark 564. A&A 551:A95. doi:10.1051/0004-6361/201220424

    Article  Google Scholar 

  • Ramírez JM, Bautista MA (2002) Resolving resonances in R-matrix calculations. J Phys B Atomic Mol Phys 35:4139–4146. doi:10.1088/0953-4075/35/20/302

  • Ramírez JM, Bautista M, Kallman T (2005) Line asymmetry in the seyfert galaxy NGC 3783. Astrophys J 627:166–176. doi:10.1086/430202

  • Ramírez JM, Komossa S, Burwitz V, Mathur S (2008) Chandra LETGS spectroscopy of the Quasar MR 2251–178 and its warm absorber. Astrophys J 681:965–981. doi:10.1086/587949

  • Rybicki GB, Lightman AP (1979) Radiative processes in astrophysics

    Google Scholar 

  • Spitzer L (1998) Physical processes in the interstellar medium

    Google Scholar 

Download references

Acknowledgments

This work is partially supported by IVIC project 2013000259. Also, it was partially supported by ABACUS, CONACyT (Mexico) grant EDOMEX-2011-C01-165873.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Ramírez-Velasquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ramírez-Velasquez, J.M., García, J. (2016). X-Ray Outflows of Active Galactic Nuclei Warm Absorbers: A 900 ks Chandra Simulated Spectrum. In: Klapp, J., Sigalotti, L.D.G., Medina, A., López, A., Ruiz-Chavarría, G. (eds) Recent Advances in Fluid Dynamics with Environmental Applications. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-27965-7_28

Download citation

Publish with us

Policies and ethics