Skip to main content

Learning Deep Temporal Representations for fMRI Brain Decoding

  • Conference paper
  • First Online:
Machine Learning Meets Medical Imaging (MLMMI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9487))

Included in the following conference series:

Abstract

Functional magnetic resonance imaging (fMRI) produces low number of samples in high dimensional vector spaces which is hardly adequate for brain decoding tasks. In this study, we propose a combination of autoencoding and temporal convolutional neural network architecture which aims to reduce the feature dimensionality along with improved classification performance. The proposed network learns temporal representations of voxel intensities at each layer of the network by leveraging unlabeled fMRI data with regularized autoencoders. Learned temporal representations capture the temporal regularities of the fMRI data and are observed to be an expressive bank of activation patterns. Then a temporal convolutional neural network with spatial pooling layers reduces the dimensionality of the learned representations. By employing the proposed method, raw input fMRI data is mapped to a low-dimensional feature space where the final classification is conducted. In addition, a simple decorrelated representation approach is proposed for tuning the model hyper-parameters. The proposed method is tested on a ten class recognition memory experiment with nine subjects. Results support the efficiency and potential of the proposed model, compared to the baseline multi-voxel pattern analysis techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bengio, Y., Bergstra, J.S.: Slow, decorrelated features for pretraining complex cell-like networks. In: Advances in Neural Information Processing Systems, pp. 99–107 (2009)

    Google Scholar 

  2. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  3. Cadieu, C.F., Hong, H., Yamins, D.L.K., Pinto, N., Ardila, D., Solomon, E.A., Majaj, N.J., DiCarlo, J.J.: Deep neural networks rival the representation of primate it cortex for core visual object recognition. PLoS Comput. Biol. 10(12), e1003963 (2014)

    Article  Google Scholar 

  4. Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P., Bengio, S.: Why does unsupervised pre-training help deep learning? J. Mach. Learn. Res. 11, 625–660 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Hausfeld, L., Valente, G., Formisano, E.: Multiclass fmri data decoding and visualization using supervised self-organizing maps. NeuroImage 96, 54–66 (2014)

    Article  Google Scholar 

  6. Haxby, J.V., Connolly, A.C., Guntupalli, J.S.: Decoding neural representational spaces using multivariate pattern analysis. Ann. Rev. Neurosci. 37(1), 435–456 (2014)

    Article  Google Scholar 

  7. Hjelm, R.D., Calhoun, V.D., Salakhutdinov, R., Allen, E.A., Adali, T., Plis, S.M.: Restricted boltzmann machines for neuroimaging: an application in identifying intrinsic networks. NeuroImage 96, 245–260 (2014)

    Article  Google Scholar 

  8. Kavukcuoglu, K., Ranzato, M., Fergus, R., LeCun, Y.: Learning invariant features through topographic filter maps. In: IEEE CVPR, pp. 1605–1612 (2009)

    Google Scholar 

  9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (2012)

    Google Scholar 

  10. Le, Q.V., Zou, W.Y., Yeung, S.Y., Ng, A.: Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis. In: IEEE CVPR, pp. 3361–3368 (2011)

    Google Scholar 

  11. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  12. Mwangi, B., Tian, T., Soares, J.: A review of feature reduction techniques in neuroimaging. Neuroinformatics 12(2), 229–244 (2014)

    Article  Google Scholar 

  13. Norman, K.A., Polyn, S.M., Detre, G.J., Haxby, J.V.: Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn. Sci. 10(9), 424–430 (2006)

    Article  Google Scholar 

  14. Pereira, F., Botvinick, M.: Information mapping with pattern classifiers: a comparative study. Neuroimage 56(2), 476–496 (2011)

    Article  Google Scholar 

  15. Shirer, W.R., Ryali, S., Rykhlevskaia, E., Menon, V., Greicius, M.D.: Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cereb. Cortex 22(1), 158–165 (2012). (New York, N.Y.: 1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orhan Firat .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 95 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Firat, O., Aksan, E., Oztekin, I., Yarman Vural, F.T. (2015). Learning Deep Temporal Representations for fMRI Brain Decoding. In: Bhatia, K., Lombaert, H. (eds) Machine Learning Meets Medical Imaging. MLMMI 2015. Lecture Notes in Computer Science(), vol 9487. Springer, Cham. https://doi.org/10.1007/978-3-319-27929-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27929-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27928-2

  • Online ISBN: 978-3-319-27929-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics