Skip to main content

Abstract

Recent breast tissue dielectric spectroscopy measurements in [35] suggest that the malignant-to-benign dielectric contrast may not be sufficiently high to allow for tumour classification based on backscatter intensity. Alternatively, it is well known that the architectural distortion in breast parenchyma can aid in distinguishing malignant tumours from benign masses [56, 65]. Mammographic image analysis shows that malignant tumours usually have an irregular shape and are surrounded by a radiating pattern of linear spicules, also their margins are obscured and indistinct. Conversely, benign tumours are roughly elliptical and usually have well-circumscribed margins [56, 65]. Accordingly, microwave backscatter signature—the signal which is reflected when a target is illuminated by microwaves—could be potentially useful for discrimination between benign and malignant tumours, and for inferring their size. Tomographic image reconstruction methods, which solve the inverse scattering problem to obtain a coarse estimation of the breast dielectric profile, have been used in this context [19].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bartholomew DJ, Steele F, Moustaki I, Galbraith JI (2002) The analysis and interpretation of multivariate data for social scientists. CRC Press, Florida, USA

    MATH  Google Scholar 

  2. Bennett KP, Campbell C (2000) Support vector machines: hype or hallelujah? ACM SIGKDD Explorations Newsletter 2(2):1–13

    Article  Google Scholar 

  3. Bond EJ, Li X, Hagness SC, Van Veen BD (2003) Microwave imaging via space-time beamforming for early detection of breast cancer. Antennas and Propagation, IEEE Transactions on 51(8):1690–1705

    Article  ADS  MathSciNet  Google Scholar 

  4. Boser BE, Guyon IM, Vapnik VN (1992) A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, ACM, pp 144–152

    Google Scholar 

  5. Campbell C (2008) Introduction to support vector machines. http://videolectures.net/epsrcws08_campbell_isvm/

  6. Chambers D, Berryman J (2006) Target characterization using decomposition of the time-reversal operator: electromagnetic scattering from small ellipsoids. Inverse Problems 22(6):2145–2163

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Chen CC, Peters Jr L (1997) Buried unexploded ordnance identification via complex natural resonances. Antennas and Propagation, IEEE Transactions on 45(11):1645–1654

    Article  ADS  Google Scholar 

  8. Chen Y, Gunawan E, Low KS, Wang SC, Soh CB, Putti TC (2008) Effect of lesion morphology on microwave signature in 2-d ultra-wideband breast imaging. Biomedical Engineering, IEEE Transactions on 55(8):2011–2021

    Article  Google Scholar 

  9. Chen Y, Craddock IJ, Kosmas P (2010a) Feasibility study of lesion classification via contrast-agent-aided UWB breast imaging. Biomedical Engineering, IEEE Transactions on 57(5):1003–1007

    Article  Google Scholar 

  10. Chen Y, Craddock IJ, Kosmas P, Ghavami M, Rapajic P (2010b) Multiple-input multiple-output radar for lesion classification in ultrawideband breast imaging. Selected Topics in Signal Processing, IEEE Journal of 4(1):187–201

    Article  ADS  Google Scholar 

  11. Conceição R (2010) The development of ultra wideband scanning techniques for detection and classification of breast cancer. PhD thesis, National University of Ireland, Galway

    Google Scholar 

  12. Conceição R, O’Halloran M, Glavin M, Jones E (2011a) Evaluation of features and classifiers for classification of early-stage breast cancer. Journal of Electromagnetic Waves and Applications 25(1):1–14

    Article  Google Scholar 

  13. Conceição RC, O’Halloran M, Glavin M, Jones E (2010) Support vector machines for the classification of early-stage breast cancer based on radar target signatures. Progress In Electromagnetics Research B 23:311–327, DOI 10.2528/PIERB10062407, http://www.jpier.org/pierb/pier.php?paper=10062407

    Google Scholar 

  14. Conceição RC, O’Halloran M, Glavin M, Jones E (2011b) Effects of dielectric heterogeneity in the performance of breast tumour classifiers. Progress In Electromagnetics Research M 17:73–86, DOI 10.2528/PIERM10122402, http://www.jpier.org/pierm/pier.php?paper=10122402

    Google Scholar 

  15. Conceição RC, O’Halloran M, Glavin M, Jones E (2011c) Numerical modelling for ultra wideband radar breast cancer detection and classification. Progress In Electromagnetics Research B 34:145–171, DOI 10.2528/PIERB11072705, http://www.jpier.org/pierb/pier.php?paper=11072705

    Google Scholar 

  16. Cortes C, Vapnik V (1995) Support-vector networks. Machine learning 20(3):273–297

    MATH  Google Scholar 

  17. Davis SK, Van Veen BD, Hagness SC, Kelcz F (2008) Breast tumor characterization based on ultrawideband microwave backscatter. Biomedical Engineering, IEEE Transactions on 55(1):237–246

    Article  Google Scholar 

  18. Deboeck G, Kohonen T (1998) Visual explorations in finance: with self-organizing maps. Springer-Verlag London Ltd., UK

    Book  MATH  Google Scholar 

  19. El-Shenawee M, Miller EL (2006) Spherical harmonics microwave algorithm for shape and location reconstruction of breast cancer tumor. Medical Imaging, IEEE Transactions on 25(10):1258–1271

    Article  Google Scholar 

  20. Everitt BS, Dunn G (2001) Applied multivariate data analysis, 2nd edn. Arnold London, UK

    Book  MATH  Google Scholar 

  21. Flores-Tapia D, Pistorius S (2011) Real time breast microwave radar image reconstruction using circular holography: A study of experimental feasibility. Medical physics 38(10):5420–5431

    Article  ADS  Google Scholar 

  22. Gävert H, Hurri J, Särelä J, Hyvärinen A (2010) The fastica package for matlab. http://www.cis.hut.fi/projects/ica/fastica

  23. Ghavami M, Michael LB, Haruyama S, Kohno R (2002) A novel uwb pulse shape modulation system. Wireless Personal Communications 23(1):105–120

    Article  Google Scholar 

  24. Goldberg DE, Richardson J (1987) Genetic algorithms with sharing for multimodal function optimization. In: Genetic algorithms and their applications: Proceedings of the Second International Conference on Genetic Algorithms, pp 41–49

    Google Scholar 

  25. Haimovich AM, Blum RS, Cimini LJ (2008) MIMO radar with widely separated antennas. Signal Processing Magazine, IEEE 25(1):116–129

    Article  ADS  Google Scholar 

  26. Hair JF, Black WC, Babin BJ, Anderson RE, Tatham RL (2006) Multivariate data analysis, 6th edn. Pearson Prentice Hall Upper Saddle River, New Jersey, USA

    Google Scholar 

  27. Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT Press, Cambridge, MA, USA

    Google Scholar 

  28. Hsu CW, Chang CC, Lin CJ (2003) A practical guide to support vector classification. National Taiwan U. http://www.csie.ntu.edu.tw/cjlin/papers/guide/guidepdf

  29. Hyvärinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural networks 13(4–5):411–430

    Article  Google Scholar 

  30. Jones M, Byrne D, McGinley B, Morgan F, Glavin M, Jones E, O’Halloran M, Conceição RC (2013) Classification and monitoring of early stage breast cancer using ultra wide band radar. In: The Eighth International Conference on Systems (ICONS), International Academy, Research, and Industry Association (IARIA), pp 46–51

    Google Scholar 

  31. Kohonen T (1990) The self-organizing map. Proceedings of the IEEE 78(9):1464–1480

    Article  Google Scholar 

  32. Kosmas P, Rappaport CM (2006) FDTD-based time reversal for microwave breast cancer detection-localization in three dimensions. Microwave Theory and Techniques, IEEE Transactions on 54(4):1921–1927

    Article  ADS  MathSciNet  Google Scholar 

  33. Kosmas P, Laranjeira S, Dixon J, Li X, Chen Y (2010) Time reversal microwave breast imaging for contrast-enhanced tumor classification. In: Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, pp 708–711

    Google Scholar 

  34. Krzanowski WJ (1988) Principles of Multivariate Analysis: A User’s Perspective. Oxford Statistical Science Series. Oxford University Press, New York, USA

    MATH  Google Scholar 

  35. Lazebnik M, Popovic D, McCartney L, Watkins CB, Lindstrom MJ, Harter J, Sewall S, Ogilvie T, Magliocco A, Breslin TM, et al (2007) A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries. Physics in Medicine and Biology 52(20):6093–6115

    Article  ADS  Google Scholar 

  36. Li J, Stoica P (2007) Mimo radar with colocated antennas. Signal Processing Magazine, IEEE 24(5):106–114

    Article  ADS  Google Scholar 

  37. Li Y, Santorelli A, Laforest O, Coates M (2015) Cost-sensitive ensemble classifiers for microwave breast cancer detection. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, pp 952–956

    Google Scholar 

  38. Maass W (1997) Networks of spiking neurons: the third generation of neural network models. Neural networks 10(9):1659–1671

    Article  Google Scholar 

  39. Maass W (1999) Computing with spiking neurons. Pulsed Neural Networks

    Google Scholar 

  40. Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. Pattern Analysis and Machine Intelligence, IEEE Transactions on 11(7):674–693

    Article  ADS  MATH  Google Scholar 

  41. Mallet Y, Coomans D, Kautsky J, De Vel O (1997) Classification using adaptive wavelets for feature extraction. Pattern Analysis and Machine Intelligence, IEEE Transactions on 19(10):1058–1066

    Article  Google Scholar 

  42. Mashal A, Booske JH, Hagness SC (2009a) Toward contrast-enhanced microwave-induced thermoacoustic imaging of breast cancer: An experimental study of the effects of microbubbles on simple thermoacoustic targets. Physics in medicine and biology 54(3):641–650

    Article  ADS  Google Scholar 

  43. Mashal A, Sitharaman B, Booske JH, Hagness SC (2009b) Dielectric characterization of carbon nanotube contrast agents for microwave breast cancer detection. In: Antennas and Propagation Society International Symposium, 2009. APSURSI’09. IEEE, pp 1–4

    Google Scholar 

  44. McGinley B, O’Halloran M, Conceição RC, Morgan F, Glavin M, Jones E (2010) Spiking neural networks for breast cancer classification using radar target signatures. Progress In Electromagnetics Research C 17:79–94

    Article  Google Scholar 

  45. Meaney PM, Fanning MW, Raynolds T, Fox CJ, Fang Q, Kogel CA, Poplack SP, Paulsen KD (2007) Initial clinical experience with microwave breast imaging in women with normal mammography. Academic Radiology 14(2):207–218

    Article  Google Scholar 

  46. Medeiros HF (2013) Classificação de tumores de cancro na mama através de radar de banda ultra-larga de microondas. PhD thesis, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, http://run.unl.pt/bitstream/10362/11483/1/Medeiros_2013.pdf

  47. Mishchenko MI, Hovenier JW, Travis LD (1999) Light scattering by nonspherical particles: theory, measurements, and applications, Academic press, chap Chapter 11: Light scattering by stochastically shaped particles

    Google Scholar 

  48. Muinonen K (1998) Introducing the gaussian shape hypothesis for asteroids and comets. Astronomy and Astrophysics 332:1087–1098

    ADS  Google Scholar 

  49. Ng A (2010) Support vector machines (part v of cs229 machine learning course materials). http://www.stanford.edu/class/cs229/notes/cs229-notes3.pdf

  50. O’Halloran M, Cawley S, McGinley B, Conceição RC, Morgan F, Jones E, Glavin M (2011a) Evolving spiking neural network topologies for breast cancer classification in a dielectrically heterogeneous breast. Progress In Electromagnetics Research Letters 25:153–162, DOI 10.2528/PIERL11050605, http://www.jpier.org/pierl/pier.php?paper=11050605

    Google Scholar 

  51. O’Halloran M, McGinley B, Conceição RC, Morgan F, Jones E, Glavin M (2011b) Spiking neural networks for breast cancer classification in a dielectrically heterogeneous breast. Progress In Electromagnetics Research 113:413–428, DOI 10.2528/PIER10122203, http://www.jpier.org/pier/pier.php?paper=10122203

    Google Scholar 

  52. Oliveira B, Glavin M, Jones E, O’Halloran M, Conceição R (2014) Avoiding unnecessary breast biopsies: Clinically-informed 3d breast tumour models for microwave imaging applications. In: Antennas and Propagation Society International Symposium (APSURSI), 2014 IEEE, IEEE, pp 1143–1144

    Google Scholar 

  53. Oliveira B, O’Halloran M, Conceição R, Glavin M, Jones E (2015) Development of clinically-informed 3d tumor models for microwave imaging applications. accepted in IEEE Antennas and Wireless Propagation Letters DOI:10.1109/LAWP.2015.2456051

    Google Scholar 

  54. Pande S, Morgan F, Cawley S, McGinely B, Carrillo S, Harkin J, McDaid L (2010) EMBRACE-SysC for analysis of NoC-based spiking neural network architectures. In: International Symposium on System-on-Chip, IEEE

    Book  Google Scholar 

  55. Prada C (2002) Detection and imaging in complex media with the D.O.R.T method. In: Imaging of complex media with acoustic and seismic waves, Springer, pp 107–134

    Google Scholar 

  56. Rangayyan RM, El-Faramawy NM, Desautels JEL, Alim O, et al (1997) Measures of acutance and shape for classification of breast tumors. Medical Imaging, IEEE Transactions on 16(6):799–810

    Article  Google Scholar 

  57. Raykov T, Marcoulides GA (2008) An introduction to applied multivariate analysis. Routledge Taylor & Francis Group. New York, USA

    MATH  Google Scholar 

  58. Richmond JH (1965) Scattering by a dielectric cylinder of arbitrary cross section shape. Antennas and Propagation, IEEE Transactions on 13(3):334–341

    Article  ADS  MathSciNet  Google Scholar 

  59. Rocke P, McGinley B, Maher J, Morgan F, Harkin J (2008) Investigating the suitability of FPAAs for evolved hardware spiking neural networks. In: Evolvable Systems: From Biology to Hardware, Springer, pp 118–129

    Google Scholar 

  60. Roussinov DG, Chen H (1998) A scalable self-organizing map algorithm for textual classification: A neural network approach to thesaurus generation. Communication and Cognition in Artificial Intelligence Journal 15(1–2):81–112

    Google Scholar 

  61. Saito N, Coifman RR (1995) Local discriminant bases and their applications. Journal of Mathematical Imaging and Vision 5(4):337–358

    Article  MathSciNet  MATH  Google Scholar 

  62. Santorelli A, Li Y, Porter E, Popović M, Coates M (2014a) Image classification for a time-domain microwave radar system: Experiments with stable modular breast phantoms. In: 2014 8th European Conference on Antennas and Propagation (EuCAP), IEEE, pp 320–324

    Google Scholar 

  63. Santorelli A, Porter E, Kirshin E, Liu YJ, Popović M (2014b) Investigation of classifiers for tumor detection with an experimental time-domain breast screening system. Progress In Electromagnetics Research 144(2):45–57

    Article  Google Scholar 

  64. Santorelli A, Laforest O, Porter E, Popović M (2015) Image classification for a time-domain microwave radar system: Experiments with stable modular breast phantoms. In: 2015 9th European Conference on Antennas and Propagation (EuCAP), IEEE, pp 1–5

    Google Scholar 

  65. Saunders R, Samei E, Baker J, Delong D (2006) Simulation of mammographic lesions. Academic radiology 13(7):860–870

    Article  Google Scholar 

  66. Scott MJJ, Niranjan M, Prager RW (1998) Realisable classifiers: Improving operating performance on variable cost problems. In: BMVC, pp 306–315

    Google Scholar 

  67. Seber GAF (1984) Multivariate observations. John Wiley & Sons, New Jersey, USA

    Book  MATH  Google Scholar 

  68. Serrano-Cinca C (1996) Self organizing neural networks for financial diagnosis. Decision Support Systems 23(3):227–238

    Article  Google Scholar 

  69. Shea JD, Kosmas P, Hagness SC, Van Veen BD (2009) Contrast-enhanced microwave breast imaging. In: Antenna Technology and Applied Electromagnetics and the Canadian Radio Science Meeting, 2009. ANTEM/URSI 2009. 13th International Symposium on, IEEE, pp 1–4

    Google Scholar 

  70. Shlens J (2003) A tutorial on principal component analysis. http://www.cs.princeton.edu/picasso/mats/PCA-Tutorial-Intuition_jp.pdf

  71. Sill JM, Fear EC (2005) Tissue sensing adaptive radar for breast cancer detection-experimental investigation of simple tumor models. Microwave Theory and Techniques, IEEE Transactions on 53(11):3312–3319

    Article  ADS  Google Scholar 

  72. Stanley KO, Miikkulainen R (2002) Evolving neural networks through augmenting topologies. Evolutionary computation 10(2):99–127

    Article  Google Scholar 

  73. Teo J, Chen Y, Soh CB, Gunawan E, Low KS, Putti TC, Wang SC (2010) Breast lesion classification using ultrawideband early time breast lesion response. Antennas and Propagation, IEEE Transactions on 58(8):2604–2613

    Article  ADS  Google Scholar 

  74. Valens C (1999–2010) A really friendly guide to wavelets. http://pagesperso-orange.fr/polyvalens/clemens/wavelets/wavelets.html#section1

  75. Veeravalli VV, Basar T, Poor HV (1994) Minimax robust decentralized detection. Information Theory, IEEE Transactions on 40(1):35–40

    Article  MATH  Google Scholar 

  76. Wasilewski F (2010) Pywavelets - coiflets 5 wavelet (coif5) properties, filters and functions - wavelet properties browser. http://wavelets.pybytes.com/wavelet/coif5

  77. Wickerhauser MV (1994) Adapted wavelet analysis from theory to software. AK Peters Ltd., MA, USA

    MATH  Google Scholar 

  78. Wold H, et al (1966) Multivariate analysis, Academic Press, New York, USA, chap Estimation of principal components and related models by iterative least squares, pp 391–420

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Cruz Conceição .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Conceição, R.C., Jones, M., Kosmas, P., Chen, Y. (2016). Tumour Classification. In: Conceição, R., Mohr, J., O'Halloran, M. (eds) An Introduction to Microwave Imaging for Breast Cancer Detection. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-27866-7_5

Download citation

Publish with us

Policies and ethics