Skip to main content

Prospects of Aluminum Modifications as Energetic Fuels in Chemical Rocket Propulsion

  • Chapter
  • First Online:
Chemical Rocket Propulsion

Abstract

The use of metals as high-energy fuels has been for long time a common approach to increase performance of chemical rocket propulsion in general. This effort was initially triggered by theoretical thermochemical considerations, but under real operating conditions, a series of collateral and unforeseen effects occurred, with both positive and negative consequences. After six decades, the use of micron-sized Al is the most common practice at industrial level for solid rocket propulsion in particular. Yet attempts are under way to mitigate some of the most deleterious effects: notably, the two-phase flow losses and slag accumulation taking place in gasdynamic nozzles. In this paper, a range of modified Al powders is discussed, going from nano-sized uncoated to coated Al particles and from chemically to mechanically activated micron-sized Al. These variants are duly characterized and comparatively tested under laboratory burning conditions. Due to page limitations, mainly the class of aluminized composite propellants (ammonium perchlorate/inert binder) and operating conditions often used in space applications are investigated. The reader is cautioned to avoid making generalizations to other formulations and conditions based on this limited dataset. Each of the tested Al variants has its own properties, and implementation in full-scale propulsive systems needs to be carefully evaluated for an overall assessment. The recommended strategy for best results is a dual mode Al mixture, synergistically exploiting each component. Other metal fuels, especially hydrides and boron compounds, are examined as well. New trends, capable of drastically changing the current situation but still in their infancy as of this writing, are briefly discussed at the end of the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

a:

Multiplicative factor in the Vieille steady burning rate law, (mm/s)/barn

actAl:

Activated Al

ADN:

Ammonium dinitramide

AFM:

Atomic force microscopy

ALEX™:

ALuminum EXploded (a trademark by APT, Tomsk, Russia)

AP:

Ammonium perchlorate

APT:

Advanced Powder Technologies

as :

Mean surface particle diameter, nm

BET:

Brunauer–Emmett–Teller

BPR:

Ball-to-powder mass ratio

c:

Specific heat, J/g K

CA:

Chemical activation

CAl :

Active metal content, mass %

CCP:

Condensed combustion products

D:

particle diameter, cm

EDX:

Energy dispersive X-ray analysis

EEW:

Electrical explosion of wires

EM:

Energetic materials

F-ALEXA :

ALuminum EXploded, coated by trihydroperfluoro-undecyl alcohol

F-ALEXE :

ALuminum EXploded, coated by ester from esterification of trihydroperfluoro-undecyl alcohol with maleic anhydride

GAP:

Glycidyl azide polymer

HEDM:

High-energy-density material

HMX:

Cyclotetramethylenetetranitramine

HTPB:

Hydroxyl-terminated polybutadiene

IARC:

International Agency for Research on Cancer

ICP:

Inductively coupled plasma analysis

Is :

Gravimetric specific impulse, s

Iv :

Volumetric (or density) specific impulse, s·g/cm3

k:

Thermal conductivity, J/cm s K

L-ALEX™:

ALuminum EXploded, coated by stearic acid

LH2 :

Liquid hydrogen

LOx:

Liquid oxygen

ℳ:

Molecular mass, g/gmole

MgxBy :

composite metal made, in mass, by x % Mg and y % B

MM:

Mechanical milling

n:

Pressure exponent in the Vieille steady burning rate law

nAl:

Nano-sized aluminum

NAp.:

not applicable

NAv.:

not available

O/F:

Oxidizer-to-fuel ratio

p:

Pressure, bar

P-ALEX™:

ALuminum EXploded, coated by palmitic acid process control agent

PDL:

Pressure deflagration limit

PTFE:

Polytetrafluoroethylene

rb :

Steady burning rate, mm/s

RDX:

Cyclotrimethylenetrinitramine

SEM:

Scanning electron microscopy

SPLab:

Space propulsion laboratory

SRB:

Solid rocket booster

SRM:

Solid rocket motor

S sp :

Specific surface area, m2/g

TEM:

Transmission electron microscopy

TG:

Thermogravimetry

Tmelt :

melting temperature, K

Tvap :

vaporization/decomposition temperature, K

VF-ALEX:

ALuminum EXploded, coated by Fluorel FC-2175 (copolymer of vinylidene fluoride and hexafluoropropylene made by 3M) and ester

XRD:

X-ray diffraction analysis

Δh 0 f :

Standard heat of formation, kJ/mole (see Table 1)

Δh melt :

melting enthalpy, kJ/mole (see Table 1)

Δh r :

reaction enthalpy, kJ/g or kJ/cm3 (see Table 1)

Δh vap :

vaporization/decomposition enthalpy, kJ/mole (see Table 1)

ΔV:

Vehicle velocity increment, m/s

μAl:

Micron-sized aluminum

ρ:

Density, g/cm3

References

  1. Williams FA, Barrère M, Huang NC (1969) Fundamental aspects of solid propellant rockets. Technivision Services, Slough, UK. AGARDograph. AGARDograph 116

    Google Scholar 

  2. Sakovich GV (1995) Design principles of advanced solid propellants. J Propuls Power 11(4):830–837

    Article  Google Scholar 

  3. Maggi F, Gariani G, Galfetti L et al (2012) Theoretical analysis of hydrides in solid and hybrid rocket propulsion. Int J Hydrog Energy 37:1760–1769. doi:10.1016/j.ijhydene.2011.10.018

    Article  Google Scholar 

  4. DeLuca LT, Maggi F, Dossi S et al (2013) High-energy metal fuels for rocket propulsion: characterization and performance. Chin J Explos Propellants 36:1–14

    Google Scholar 

  5. Karabeyoglu A (2016) Chapter 5: Performance additives for hybrid rocket engines. In: DeLuca LT, Shimada T, Sinditskii VP, Calabro M (eds) Chemical rocket propulsion: a comprehensive survey of energetic materials. Springer International Publishing, Cham

    Google Scholar 

  6. Risha GA, Evans BJ, Boyer E, AIAA et al (2007) Metals, energetic additives, and special binders used in solid fuels for hybrid. In: Chiaverini MJ, Kuo KK (eds) Fundamentals of hybrid rocket combustion and propulsion. AIAA, Reston, pp 413–456

    Google Scholar 

  7. Gromov AA, Teipel U (eds) (2014) Metal nanopowders: production, characterization, and energetic applications. Wiley-VCH, Weinheim

    Google Scholar 

  8. Anon. (1993) Beryllium and beryllium compounds (No. 58), IARC summaries & evaluations. International Agency for Research on Cancer (IARC)

    Google Scholar 

  9. Srivastava RD, Farber M (1978) Thermodynamic properties of Group 3 oxides. Chem Rev 78:627–638. doi:10.1021/cr60316a002

    Article  Google Scholar 

  10. Chase MWJ (1998) NIST-JANAF thermochemical tables. J Phys Chem Ref Data 9:1–1951

    Google Scholar 

  11. Haddad A, Natan B, Arieli R (2011) The performance of a boron-loaded gel-fuel ramjet. In: DeLuca LT, Bonnal C, Frolov S, Haidn OJ (eds) Progress in propulsion physics. EDP Sciences, Paris, pp 499–518. doi:10.1051/eucass/201102499

    Google Scholar 

  12. DeLuca LT, Marchesi E, Spreafico M et al (2010) Aggregation versus agglomeration in metallized solid rocket propellants. Int J Energy Mater Chem Propuls 9:91–105

    Google Scholar 

  13. Navrotsky A (2003) Energetics of nanoparticle oxides: interplay between surface energy and polymorphism. Geochem Trans 4:34–37. doi:10.1039/b308711e

    Article  Google Scholar 

  14. Gromov AA, Maggi F, Malikova EV et al (2014) Combustion synthesis of AlN (Al3O3N), BN, ZrN, and TiN in air and ceramic application. In: Gromov AA, Chukhlomina LN (eds) Nitride ceramics: combustion synthesis, properties and applications. Wiley-VCH, Weinheim, pp 125–163

    Google Scholar 

  15. Kubota N (2007) Propellants and explosives: thermochemical aspects of combustion, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  16. Lide DR (2007) CRC handbook of chemistry and physics, 88th edn. CRC Press, Boca Raton

    Google Scholar 

  17. Glassman I (2008) Combustion, 4th edn. Academic Press/Elsevier, New York

    Google Scholar 

  18. Perry RH et al (1997) Perry’s chemical engineers’ handbook, 7th edn. McGraw Hill, New York

    Google Scholar 

  19. Dean JA (1999) Lange’s handbook of chemistry, 15th edn. McGraw Hill, New York

    Google Scholar 

  20. Gen MY, Frolov YV, Storozhev VB (1978) On combustion of particles of subdispersed aluminum. Combust Explosion Shock Waves 14(5):153–155

    Article  Google Scholar 

  21. Gen MY, Ziskin MS, Petrov YI (1959) Investigation of aluminum aerosol dispersion depending on of their formation conditions. Proc Acad Sci USSR (Doklady) 127:366

    Google Scholar 

  22. DeLuca LT, Galfetti L, Maggi F et al (2014) Chapter 12: Characterization and combustion of aluminum nanopowders in energetic systems. In: Gromov AA, Teipel U (eds) Metal nanopowders: production, characterization, and energetic applications. Wiley VCH, Wenheim, pp 301–400

    Chapter  Google Scholar 

  23. Kwon YS, Jung YH, Yavorovsky NA et al (2001) Ultra-fine powder by wire explosion method. Scr Mater 44(8–9):2247–2251

    Article  Google Scholar 

  24. Advanced Powder Technologies LLC (2015) http://www.nanosized-powders.com. Accessed 31 Mar 2015

  25. Kwo YS, Gromov AA, Strokova JJ (2007) Passivation of the surface of aluminum nanopowders by protective coatings of different chemical origin. Appl Surf Sci 253:5558–5564

    Article  Google Scholar 

  26. Sossi A, Duranti E, Paravan C, DeLuca LT, Vorozhtsov AB, Gromov AA, Pautova YI, Lerner MI, Rodkevich NG (2013) Non-isothermal oxidation of aluminum nanopowder coated by hydrocarbons and fluorohydrocarbons. Appl Surf Sci 271:337–343. doi:10.1016/j.apsusc.2013.01.197

    Article  Google Scholar 

  27. Sossi A, Duranti E, Manzoni M, Paravan C, DeLuca LT, Vorozhtsov AB, Lerner MI, Rodkevich NG, Gromov AA, Savin N (2013) Combustion of HTPB-based solid fuels loaded with coated nanoaluminum. Combust Sci Technol 185(1):17–36. doi:10.1080/00102202.2012.707261

    Article  Google Scholar 

  28. Chen L, Song W, Lv J et al (2010) Research on the methods to determine metallic aluminum content in aluminum nanoparticles. Mater Chem Phys 120:670–675

    Article  Google Scholar 

  29. Klager K (1984) Polyurethanes, the most versatile binder for solid composite propellants. Am Inst Aeronaut Astronaut. doi:10.2514/6.1984-1239

    Google Scholar 

  30. Humble R (2000) Fuel performance enhancements for hybrid rockets. Am Inst Aeronaut Astronaut. doi:10.2514/6.2000-3437

    Google Scholar 

  31. Mackay ME, Tuteja A, Duxbury PM et al (2006) General strategies for nanoparticle dispersion. Science 311:1740–1743

    Article  Google Scholar 

  32. Reina A, Paravan C, Morlacchi M, Frosi A, Maggi F, DeLuca LT (2013) Rheological and mechanical behavior of coated aluminum loaded nano-composites. In: Haidn OJ, Zinner W, Calabro M (eds) 5th European conference for aerospace sciences (EUCASS 2013), ISBN: 9788494153105, pp 1–14 [5th European conference for aerospace sciences (EUCASS 2013), Munich 1–5 Jul 2013]

    Google Scholar 

  33. Zare A, Harriman T, Lucca DA, Roncalli S, Kosowski BM, Paravan C, DeLuca LT (2016) Chapter 27: Mapping of aluminum particle dispersion in solid rocket fuel formulations. In: DeLuca LT, Shimada T, Sinditskii VP, Calabro M (eds) Chemical rocket propulsion: a comprehensive survey of energetic materials. Springer International Publishing, Cham

    Google Scholar 

  34. Pokhil PF, Belyaev AF, Frolov YV (1972) Combustion of Metal Powders in Active Media. Nauka, Moscow

    Google Scholar 

  35. Price EW (1979) Combustion of aluminum in solid propellant flames, AGARD PEP 53rd Meeting on solid rocket motor technology, Paper 14, AGARD, Paris

    Google Scholar 

  36. Price EW (1984) Chap. 9: Combustion of metallized propellants, fundamentals of solid propellants combustion. In: Kuo KK, Summerfield M (eds) AIAA progress in aeronautics and astronautics, vol 90. AIAA, New York

    Google Scholar 

  37. Olivani A, Galfetti L, Severini F, Colombo G, Cozzi F, Lesma F, Sgobba M (2002) Aluminum particle size influence on ignition and combustion of AP/HTPB/Al solid rocket propellants, RTO-AVT Fall 2002 Meetings, Aalborg 23–27 Sept 2002

    Google Scholar 

  38. DeLuca LT, Galfetti L, Severini F, Meda L, Marra G, Vorozhtsov AB, Sedoi VB, Babuk VA (2005) Burning of nAl composite rocket propellants. Combust Explosion Shock Waves 41(6):680–692

    Article  Google Scholar 

  39. DeLuca LT (2007) Burning of aluminized solid rocket propellants: from micrometric to nanometric fuel size. In: Ping H, Yajun W, Shengcai L (eds) Theory and practice of energetic materials, vol 7. Science Press, Beijing, pp 277–289

    Google Scholar 

  40. DeLuca LT, Galfetti L (2008) Burning of metallized composite solid rocket propellants: from micrometric to nanometric aluminum size, Asian joint conference on propulsion and power, Gyeongju, 6–8 March 2008

    Google Scholar 

  41. DeLuca LT, Galfetti L, Maggi F, Colombo G, Bandera A, Cerri S, Donegà P (2008) Burning of metallized composite solid rocket propellants: toward nanometric fuel size. In: Proceedings of ESA space propulsion, ESA, Crete, 05–08 May 2008

    Google Scholar 

  42. DeLuca LT, Bandera A, Maggi F (2009) Agglomeration of aluminized solid rocket propellants. AIAA paper 2009-5439, AIAA, Reston. doi:10.2514/6.2009-5439

  43. DeLuca LT, Galfetti L, Colombo G, Maggi F, Bandera A, Babuk VA, Sinditskii VP (2010) Microstructure effects in aluminized solid rocket propellants. J Propuls Power 26(4):724–733

    Article  Google Scholar 

  44. Grigor’ev VG, Kutsenogii KP, Zarko VE (1981) Model of aluminum agglomeration during the combustion of a composite propellant. Combust Explosion Shock Waves 17(4):356–363

    Article  Google Scholar 

  45. Cohen NS (1983) A pocket model for aluminum agglomeration in composite propellants. AIAA J 21(5):720–725

    Article  Google Scholar 

  46. Babuk VA, Vasilyev VA, Malakhov MS (1999) Condensed combustion products at the burning surface of aluminized solid propellant. J Propuls Power 15(6):783–793

    Article  Google Scholar 

  47. Babuk VA, Vasilyev VA, Sviridov VV (2000) Formation of condensed combustion products at the burning surface of solid rocket propellant. In: Yang V, Brill TB, Ren WZ (eds) Solid propellant chemistry, combustion, and motor interior ballistics, vol 185, AIAA Progress in Astronautics and Aeronautics. AIAA, Reston, pp 749–776

    Google Scholar 

  48. Babuk VA, Vasilyev VA, Glebov AA, Dolotkazin IN, Galeotta M, DeLuca LT (2004) Combustion mechanisms of AN-based aluminized solid rocket propellants. In: Novel energetic materials and applications, vol 9, IWCP. Grafiche GSS, Bergamo, paper 44

    Google Scholar 

  49. Babuk VA, Glebov A, Arkhipov VA, Vorozhtsov AB, Klyakin GF, Severini F, Galfetti L, DeLuca LT (2005) Dual-oxidizer solid rocket propellants for low-cost access to space. In: DeLuca LT, Sackheim RL, Palaszewski BA (eds) In-space propulsion, vol 10, IWCP. Grafiche GSS, Bergamo, paper 15

    Google Scholar 

  50. Babuk VA (2016) Chapter 13: Solid propellant formulation factors and properties of condensed combustion products. In: DeLuca LT, Shimada T, Sinditskii VP, Calabro M (eds) Chemical rocket propulsion: a comprehensive survey of energetic materials. Springer International Publishing, Cham

    Google Scholar 

  51. Rashkovskiy SA (1998) Metal agglomeration in solid propellants combustion—Part 2: Numerical experiments. Combust Explosion Shock Waves 136(1–6):149–169. doi:10.1080/00102209808924169

    Google Scholar 

  52. Gallier S (2009) A stochastic pocket model for aluminum agglomeration in solid propellants. Propellant Explos Pyrotechnics 34(2):97–105. doi:10.1002/prep.v34:2

    Article  Google Scholar 

  53. Maggi F, DeLuca LT, Bandera A (2015) Pocket model for aluminum agglomeration based on propellant microstructure. AIAA Journal 53(11):3395–3403. doi:10.2514/1.J053992

  54. Kraeutle KJ (1978) Particle size analysis in solid propellant combustion research. In: Boggs TL, Zinn BT (eds) Experimental diagnostics in combustion of solids, vol 63, AIAA Progress in astronautics and aeronautics. AIAA, New York, pp 76–108

    Google Scholar 

  55. Weiser V, Gettwert V, Franzin A, DeLuca LT et al (2016) Chapter 10: Combustion behavior of aluminum particles in ADN/GAP composite propellants. In: DeLuca LT, Shimada T, Sinditskii VP, Calabro M (eds) Chemical rocket propulsion: a comprehensive survey of energetic materials. Springer International Publishing, Cham

    Google Scholar 

  56. Dondé R, Guarnieri C, Meda L, Marra G, Orsini D, Prato A, Galfetti L, DeLuca LT (2007) Experimental investigations on transient burning of nano-aluminized solid rocket propellants, AAAF conference on changes in aeronautical and space systems, Avignon, 26–28 June 2006

    Google Scholar 

  57. Arkhipov VA, Bondarchuk SS, Korotkikh AG, Kuznetsov VT, Gromov AA, Volkov SA, Revyagin LN (2012) Influence of aluminum particle size on ignition and nonstationary combustion of heterogeneous condensed systems. Combust Explosion Shock Waves 48(5): 625–635

    Article  Google Scholar 

  58. Arkhipov VA, Korotkikh AG (2012) The influence of aluminum powder dispersity on composite solid propellants ignitability by laser radiation. Comb Flame 159(1):409–415

    Article  Google Scholar 

  59. Zhao FQ, Yao EG, Xu SY, Li X, Xu HX, Hao HX (2016) Chapter 11: Laser ignition of different aluminum nanopowders for solid rocket propulsion. In: DeLuca LT, Shimada T, Sinditskii VP, Calabro M (eds) Chemical rocket propulsion: a comprehensive survey of energetic materials. Springer International Publishing, Cham

    Google Scholar 

  60. Arkhipov VA, Vorozhtsov AB, Shrager ER et al (2004) Acoustic admittance function study for solid propellants containing ultrafine aluminum. In: DeLuca LT, Galfetti L, Pesce-Rodriguez RA (eds) Novel energetic materials and applications. Proceedings of the IX international workshop on combustion and propulsion, Lerici, Italy, 14–18 Sept 2003. Grafiche GSS, Bergamo

    Google Scholar 

  61. Komarova M, Vorozhtsov AB (2014) Influence of passivated nanosized aluminum powder on physico-chemical characteristics of metalized compositions combustion. Russ Phys J 57(7):76–80

    Article  Google Scholar 

  62. Lerner M, Glaskova E, Vorozhtsov AB, Rodkevich N et al (2015) Passivation of nanosized aluminum powder for use in high energetic materials. Russ J Phys Chem B (Khimicheskaya Foizika, in Russian) 9(1):56–61

    Article  Google Scholar 

  63. Vorozhtsov AB, Zhukov A, Ziatdinov M, Bondarchuk S, Lerner M, Rodkevich N (2016) Chapter 9: Novel micro- and nanofuels: production, characterization, and applications for high energy materials. In: DeLuca LT, Shimada T, Sinditskii VP, Calabro M (eds) Chemical rocket propulsion: a comprehensive survey of energetic materials. Springer International Publishing, Cham

    Google Scholar 

  64. Sundaram DS, Yang V, Zarko VE (2015) Combustion of nano aluminum particles (review). Combust Explosion Shock Waves 51(2):173–196. © Pleiades Publishing, Ltd., 2015

    Article  Google Scholar 

  65. Rosenband V, Gany A (2011) High-reactivity aluminum powders. J Energy Mater Chem Propuls 10(1):19–32

    Google Scholar 

  66. Yavor Y, Rosenband V, Gany A (2014) Reduced agglomeration in solid propellants containing porous aluminum. Proc Inst Mech Eng Part G 228(10):1857–1862

    Article  Google Scholar 

  67. Hama A, Gany A, Palovuori K (2006) Combustion of activated aluminum. Combust Flame 145(3):464–480

    Article  Google Scholar 

  68. Hama A (2010) Method of improving the burn rate and ignitability of aluminum fuel particles and aluminum fuel so modified. US Patent US 7785430 B2

    Google Scholar 

  69. Maggi F, Dossi S, Paravan C, DeLuca LT, Liljedahl M (2015) Activated aluminum powders for space propulsion. Powder Technol 270:46–52

    Article  Google Scholar 

  70. Zhang DL (2004) Processing of advanced materials using high-energy mechanical milling. Prog Mater Sci 49(3–4):537–560

    Article  Google Scholar 

  71. Koch CC, Whittenberger JD (1995) Review mechanical milling/alloying of intermetallics. Intermetallics 4(5):339–355

    Article  Google Scholar 

  72. Filimonova VY, Korchagin MA, Evstigneev VV (2009) Anomalous decrease in the activation energy and initiation temperature of a thermal explosion in the mechanically activated composition 3Ni + Al. Dokl Phys 54(6):277–280

    Article  Google Scholar 

  73. Shteinberg AS, Lin YC, Son SF, Mukasyan AS (2010) Kinetic of high temperature reaction in Ni-Al system: influence of mechanical activation. J Phys Chem A 114(20):6111–6116

    Article  Google Scholar 

  74. Sippel TR, Son SF, Groven LJ (2013) Altering reactivity of aluminium with selective inclusion of polytetrafluoroethylene through mechanical activation. Propell Explos Pyrot 38(2):286–295

    Article  Google Scholar 

  75. Dossi S (2014) Mechanically activated Al fuels for high performance solid rocket propellants. PhD Dissertation, Politecnico di Milano

    Google Scholar 

  76. Sippel TR, Son SF, Groven LJ et al (2014) Exploring mechanisms for agglomerate reduction in composite solid propellants with polyethylene inclusion modified aluminum. Combust Flame. (162): http://dx.doi.org/10.1016/j.combustflame.2014.08.013

  77. Chan ML, Parr T, Hanson-Parr D, Bui T, Mason M (2004) Characterization of a boron containing propellant, In: DeLuca LT, Galfetti L, Pesce-Rodriguez RA (eds) Novel energetic materials and applications, IWCP vol 9, Paper 07. Grafiche GSS, Bergamo

    Google Scholar 

  78. Mitani T, Izumikawat M (1991) Combustion efficiencies of aluminum and boron in solid propellants. AIAA J Spacecr Rocket 28(1):79–84

    Article  Google Scholar 

  79. Dossi S, Reina A, Maggi F, DeLuca LT (2012) Innovative metal fuels for solid rocket propulsion. Int J Energy Mater Chem Propuls 11(4):299–322

    Google Scholar 

  80. Shevchuk VG, Zolotko AN, Polishchuk DI (1975) Ignition of packed boron particles. Combust Explosion Shock Waves 11:189–192

    Article  Google Scholar 

  81. DeLuca LT, Galfetti L, Maggi F, Colombo G, Reina A, Dossi S, Consonni D, Brambilla M (2012) Innovative metallized formulations for solid or hybrid rocket propulsion. Hanneng Cailiao/Chin J Energetic Mater 20(4):465–474. doi:10.3969/j.issn.1006-9941.2012.04.018. Presented at the 2011 IASPEP (International Autumn Seminar on Propellants, Explosives and Pyrotechnics), China

    Google Scholar 

  82. DeLuca LT (2011) Energetic problems in aerospace propulsion. Politecnico di Milano, Milan

    Google Scholar 

  83. Fassina M (2015) Effects of Al particles shape on solid rocket propellant burning. PhD Dissertation, Politecnico di Milano, Milan, 16 February 2015

    Google Scholar 

  84. DeLuca LT, Galfetti L, Severini F, Rossettini L, Meda L, Marra G, D’Andrea B, Weiser V, Calabro M, Vorozhtsov AB, Glazunov AA, Pavlovets GJ (2007) Physical and ballistic characterization of AlH3-based space propellants. Aerosp Sci Technol 11:18–25

    Article  Google Scholar 

  85. DeLuca LT, Rossettini L, Kappenstein Ch, Weiser V (2009) Ballistic characterization of AlH3-based propellants for solid and hybrid rocket propulsion, AIAA Paper 2009–4874

    Google Scholar 

  86. Young G, Piekiel N, Chowdhury S, Zachariah MR (2010) Ignition behavior of α-AlH3. Combust Sci Technol 182:1341–1359

    Article  Google Scholar 

  87. Young G, Risha GA, Miller AG, Glass RA, Connell TL, Yetter RA (2010) Combustion of alane-based solid fuels. Int J Energetic Mater Chem Propuls 9(3):249–266

    Article  Google Scholar 

  88. Young G, Jacob R, Zachariah MR (2015) High pressure ignition and combustion of aluminum hydride. Combust Sci Technol 187:1335–1350

    Article  Google Scholar 

  89. Glorian J, Catoire L, Gallier S, Cesco N (2015) Gas-surface thermochemistry and kinetics for aluminum particle combustion. Proc Combust Inst 35:2439–2446

    Article  Google Scholar 

  90. Komarov VF, Shandakov VA (1999) Solid fuels, their properties, and applications. Combust Explosion Shock Waves 35(2):139–143

    Article  Google Scholar 

  91. Lipanov AM, Zarko VE (2016) Chapter 43: Survey of solid rocket propulsion in Russia. In: DeLuca LT, Shimada T, Sinditskii VP, Calabro M (eds) Chemical rocket propulsion: a comprehensive survey of energetic materials. Springer International Publishing, Cham

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi T. DeLuca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

DeLuca, L.T., Maggi, F., Dossi, S., Fassina, M., Paravan, C., Sossi, A. (2017). Prospects of Aluminum Modifications as Energetic Fuels in Chemical Rocket Propulsion. In: De Luca, L., Shimada, T., Sinditskii, V., Calabro, M. (eds) Chemical Rocket Propulsion. Springer Aerospace Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-27748-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27748-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27746-2

  • Online ISBN: 978-3-319-27748-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics