Skip to main content

Neurologic Control of the Larynx

  • Chapter
  • First Online:
The Recurrent and Superior Laryngeal Nerves

Abstract

The larynx is a multifunctional organ. It is a valve that plays key roles in breathing, swallowing, and speech, as well as defecation and stabilization of the thorax during heavy lifting. The larynx is also a sensory organ, densely supplied with receptors that are activated by a variety of mechanical and chemical stimuli. Neural control of the larynx is, therefore, complex and varies according to function. Protection of the airway is the most primitive function of the larynx. It closes tightly during a swallow and in response to noxious stimuli. Laryngospasm may result from saturation of the pathways that stimulate laryngeal closure. The larynx opens and closes during breathing to control airflow. This activity is controlled by central pattern generators in response to respiratory demand, but can be overridden by voluntary activity. The laryngeal valve is also very active during a cough: opening widely during the inspiratory phase, closing tightly during the compressive phase, and then suddenly opening in the expulsive phase. As with respiratory motion, cough may be reflexive, or voluntary. Voice production requires appropriate approximation of the vocal folds to achieve oscillation during exhalation. Pitch is controlled by intricate control of the length, tension, and thickness of the vocal folds, in precise coordination with respiratory muscles. Speech also requires precise coordination between the actions of laryngeal muscles, respiratory muscles, and the muscles of articulation: lips, tongue, palate, jaws, and pharyngeal constrictors. Laryngeal motor neurons are located in the nucleus ambiguous. In nonhuman mammals, phonation is controlled at subcortical levels. This system is also present in humans. But humans, and humans alone, have direct cortical control of laryngeal muscles. The complex actions of the small muscles in the larynx are quite vulnerable to distortion by peripheral nerve injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Woodson GE. Spontaneous laryngeal reinnervation after recurrent laryngeal or vagus nerve injury. Ann Otol Rhinol Laryngol. 2007;116(1):57–65.

    Article  PubMed  Google Scholar 

  2. Boushey HA, Richardson PS, Widdicombe JG, Wise JC. The response of laryngeal afferent fibres to mechanical and chemical stimuli. J Physiol. 1974;240(1):153–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sant’Ambrogio FB, Mathew OP, Clark WD, Sant’Ambrogio G. Laryngeal influences on breathing pattern and posterior cricoarytenoid muscle activity. J Appl Physiol. 1985;58:1298.

    PubMed  Google Scholar 

  4. Kuna ST, Insalaco G, Woodson GE. Thyroarytenoid muscle activity during wakefulness and sleep in normal adults. J Appl Physiol. 1988;63:1332.

    Google Scholar 

  5. Mathew OP, Abu-Osba YK, Thach BT. Influence of upper airway pressure changes in respiratory frequency. J Appl Physiol. 1982;52:483.

    Google Scholar 

  6. Sant’Ambrogio G, Mathew OP, Fisher JT, et al. Laryngeal receptors responding to transmural pressure, airflow and local muscle activity. Respir Physiol. 1983;54:317.

    Article  PubMed  Google Scholar 

  7. Woodson GE, Powell FL. Effects of hypoxia and hypercapnia on cricothyroid muscle response to airway pressure. Respir Physiol. 1992;87(1):25–35.

    Article  CAS  PubMed  Google Scholar 

  8. Saiiudo JR, Maranillo E, Leh X, Mirapeix R, et al. An anatomical study of anastomoses between the laryngeal nerves. Laryngoscope. 1999;109:983–7.

    Article  Google Scholar 

  9. Sanders I, Wu BL, Mu L, et al. The innervation of the human posterior cricoarytenoid muscle: evidence for at least two neuromuscular compartments. Laryngoscope. 1994;104:880–4.

    CAS  PubMed  Google Scholar 

  10. Wu BL, Sanders I. The human cricothyroid muscle: three muscle bellies and their innervation patterns. J Voice. 2009;23(1):21–8.

    Article  Google Scholar 

  11. Sanders I, Rai S, Han Y, et al. Human vocalis contains distinct superior and inferior subcompartments: possible candidates for the two masses of vocal fold vibration. Ann Otol Rhinol Laryngol. 1998;107(10 Pt 1):826–33.

    Article  CAS  PubMed  Google Scholar 

  12. Hunter EJ, Titze IR, Alipour F. A three-dimensional model of vocal fold abduction/adduction. J Acoust Soc Am. 2004;115(4):1747–59.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Neuman T, Hengesteg A, Kaufman K, LePege R, Woodson GE. Three-dimensional motion of the arytenoid adduction procedure in cadaver larynges. Ann Otol Rhinol Laryngol. 1994;103:265–70.

    Article  CAS  PubMed  Google Scholar 

  14. Hirano M, Vennard W, Ohala J. Regulation of register, pitch and intensity of voice. An electromyographic investigation of intrinsic laryngeal muscles. Folia Phoniatr (Basel). 1970;22(1):1–20.

    Article  CAS  Google Scholar 

  15. Hillel AD. The study of laryngeal muscle activity in normal human subjects and in patients with laryngeal dystonia using multiple fine-wire electromyography. Laryngoscope. 2001;111(4 Pt 2 Suppl 97):1–47.

    Article  CAS  PubMed  Google Scholar 

  16. Santo Neto H, Marques MJ. Estimation of the number and size of motor units in intrinsic laryngeal muscles using morphometric methods. Clin Anat. 2008;21(4):301–6.

    Article  PubMed  Google Scholar 

  17. Schweizer V, Woodson GE, Bertorini TE. Single-fiber electromyography of the laryngeal muscles. Muscle Nerve. 1999;22:111–4.

    Article  CAS  PubMed  Google Scholar 

  18. Bryant NJ, Woodson GE, Kaufman K, et al. Human posterior cricoarytenoid muscle compartments: anatomy and mechanics. Arch Otolaryngol. 1996;122:1331–6.

    Article  CAS  Google Scholar 

  19. Hirose H, Gay T. The activity of the intrinsic laryngeal muscles in voicing control. An electromyographic study. Phonetica. 1972;25(3):140–64.

    Article  CAS  PubMed  Google Scholar 

  20. Woodson GE, Picerno R, Yeung P, Hengesteg A. Arytenoid adduction: controlling vertical position. Ann Otol Rhinol Laryngol. 2000;109:360–4.

    Article  CAS  PubMed  Google Scholar 

  21. Reidenbach MM. The muscular tissue of the vestibular folds of the larynx. Eur Arch Otorhinolaryngol. 1998;255(7):365–7.

    Article  CAS  PubMed  Google Scholar 

  22. Woodson GE, Murry MP, Schweizer V, Hengesteg AP, Chen N, Yeung D. Unilateral cricothyroid contraction and glottic configuration. J Voice. 1998;12(3):335–9.

    Article  CAS  PubMed  Google Scholar 

  23. Baker KK, Ramig LO, Sapir S, Luschei ES, Smith ME. Control of vocal loudness in young and old adults. J Speech Lang Hear Res. 2001;44:297–305.

    Article  CAS  PubMed  Google Scholar 

  24. Atkinson JE. Inter- and intraspeaker variability in fundamental voice frequency. J Acoust Soc Am. 1976;60(2):440–6.

    Article  CAS  PubMed  Google Scholar 

  25. Murry T, Xu JJ, Woodson GE. Glottal configuration associated with fundamental frequency and vocal register. J Voice. 1998;12(1):44–9.

    Article  CAS  PubMed  Google Scholar 

  26. Aviv JE, Martin JH, Kim T, et al. Laryngopharyngeal sensory discriminating testing and the laryngeal adductor reflex. Ann Otol Rhinol Laryngol. 1999;108:725–30.

    Article  CAS  PubMed  Google Scholar 

  27. Davis PJ, Nail BS. On the location and size of laryngeal motoneurons in the cat and rabbit. J Comp Neurol. 1984;230(1):13–32.

    Article  CAS  PubMed  Google Scholar 

  28. Gacek RR. Localization of laryngeal motor neurons in the kitten. Laryngoscope. 1975;85(11 Pt 1):1841–61.

    Article  CAS  PubMed  Google Scholar 

  29. Hernández-Morato I, Valderrama-Canales FJ, Berdugo G, Arias G, McHanwell S, Sañudo J, Vázquez T, Pascual-Font A. Reorganization of laryngeal motoneurons after crush injury in the recurrent laryngeal nerve of the rat. J Anat. 2013;4:451–61.

    Article  Google Scholar 

  30. Yoshida Y, Yatake K, Tanaka Y, Imamura R, Fukunaga H, Nakashima T, Hirano M. Morphological observation of laryngeal motoneurons by means of cholera toxin B subunit tracing technique. Acta Otolaryngol Suppl. 1998;539:98–105.

    Article  CAS  PubMed  Google Scholar 

  31. Robertson GN, Hopkins DA. Ultrastructure and synaptology of the nucleus ambiguus in the rat: the semicompact and loose formations. J Comp Neurol. 1996;375(1):109–27.

    Article  PubMed  Google Scholar 

  32. Hayakawa T, Zheng JQ, Maeda S, Ito H, Seki M, Yajima Y. Synaptology and ultrastructural characteristics of laryngeal cricothyroid and posterior cricoarytenoid motoneurons in the nucleus ambiguus of the rat. Anat Embryol (Berl). 1999;200(3):301–11.

    Article  CAS  Google Scholar 

  33. Ludlow C. Central nervous system control of the laryngeal muscles in humans. Respir Physiol Neurobiol. 2005;147(2–3):205–22.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Monnier M, Willi H. The integrative activity of the nervous system of a meso-rhombencephalic anencephalus. II. Anatomical part. Monatsschr Psychiatr Neurol. 1953;126:259–73.

    Article  CAS  PubMed  Google Scholar 

  35. Kuypers HG. Cortico-bulbar connections to the pons and lower brainstem in man. Anatomical study. Brain. 1958;81:364–88.

    Article  CAS  PubMed  Google Scholar 

  36. Simonyan K, Jurgens U. Efferent subcortical projections of the laryngeal motorcortex in the rhesus monkey. Brain Res. 2003;974:43–59.

    Article  CAS  PubMed  Google Scholar 

  37. Ludlow CL, Adler CH, Berke GS, Bielamowicz SA, Blitzer A, Bressman SB, Hallett M, Jinnah HA, Juergens U, Martin SB, Perlmutter JS, Sapienza C, Singleton A, Tanner CM, Woodson GE. Research priorities in spasmodic dysphonia. Otolaryngol Head Neck Surg. 2008;139(4):495–505.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jurgens U. The neural control of vocalization in mammals: a review. J Voice. 2009;23:1–10.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gayle E. Woodson M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Woodson, G.E. (2016). Neurologic Control of the Larynx. In: Randolph, G. (eds) The Recurrent and Superior Laryngeal Nerves. Springer, Cham. https://doi.org/10.1007/978-3-319-27727-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27727-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27725-7

  • Online ISBN: 978-3-319-27727-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics