Skip to main content

Evaluating the Robustness of Correlation Network Analysis in the Aging Mouse Hypothalamus

  • Conference paper
  • First Online:
Biomedical Engineering Systems and Technologies (BIOSTEC 2015)

Abstract

Volumes of high-throughput assays been made publicly available. These massive repositories of biological data provide a wealth of information that can harnessed to investigate pressing questions regarding aging and disease. However, there is a distinct imbalance between available data generation techniques and data analysis methodology development. Similar to the four “V’s” of big data, biological data has volume, velocity, heterogeneity, and is prone to error, and as a result methods for analysis of this “biomedical big data” have developed at a slower rate. One promising solution to this multi-dimensional issue are network models, which have emerged as effective tools for analysis as they are capable of representing biological relationships en masse. Here we examine the need for development of standards and workflows in the usage of the correlation network model, where nodes and edges represent correlation between expression pattern in genes. One structure identified as biologically relevant in a correlation network, the gateway node, represents genes that change in co-expression between two different states. In this research, we manipulate parameters used to identify the gateway nodes within a given dataset to determine the consistency of results among network building and clustering approaches. This proof-of-concept is extremely important to investigate as there is a growing pool of methods used for various steps in our network analysis workflow, causing a lack of robustness, consistency, and reproducibility. This research compares the original gateway nodes analysis approach with manipulation in (1) network creation and (2) clustering analysis to test the consistency of structural results in the correlation network. To truly be able to trust these approaches, it must be addressed that even minor changes in approach can have sweeping effects on results. The results of this study allow the authors to call for stronger studies in benchmarking and reproducibility in biomedical “big” data analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Benson, M., Breitling, R.: Network theory to understand microarray studies of complex diseases. Curr. Mol. Med. 6(6), 695–701 (2006)

    Article  Google Scholar 

  2. Reverter, A., Chan, E.K.: Combining partial correlation and an information theory approach to the reversed engineering of gene co-expression networks. Bioinformatics 24(21), 2491–2497 (2008). doi:10.1093/bioinformatics/btn482

    Article  Google Scholar 

  3. Horvath, S., Dong, J.: Geometric interpretation of gene coexpression network analysis. PLoS Comput. Biol. 4(8), e1000117 (2008). doi:10.1371/journal.pcbi.1000117

    Article  MathSciNet  Google Scholar 

  4. Dempsey, K.M., Ali, H.H.: Identifying aging-related genes in mouse hippocampus using gateway nodes. BMC Syst. Biol. 8, 62 (2014). doi:10.1186/1752-0509-8-62

    Article  Google Scholar 

  5. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999). doi:7898. [pii]

    Google Scholar 

  6. Jeong, H., Mason, S.P., Barabasi, A.L., Oltvai, Z.N.: Lethality and centrality in protein networks. Nature 411(6833), 41–42 (2001). doi:10.1038/35075138

    Article  Google Scholar 

  7. Barabasi, A.L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5(2), 101–113 (2004). doi:10.1038/nrg1272

    Article  Google Scholar 

  8. Albert, R.: Scale-free networks in cell biology. J. Cell Sci. 118(Pt 21), 4947–4957 (2005). doi:118/21/4947. [pii]

    Google Scholar 

  9. Bader, G.D., Hogue, C.W.: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 4, 2 (2003)

    Article  Google Scholar 

  10. Michaut, M., Baryshnikova, A., Costanzo, M., et al.: Protein complexes are central in the yeast genetic landscape. PLoS Comput. Biol. 7(2), e1001092 (2011). doi:10.1371/journal.pcbi.1001092

    Article  Google Scholar 

  11. Dempsey, K., Thapa, I., Bastola, D., Ali, H.: Functional identification in correlation networks using gene ontology edge annotation. Int. J. Comput. Biol. Drug Des. 5(3–4), 222–244 (2012). doi:10.1504/IJCBDD.2012.049206

    Article  Google Scholar 

  12. Dempsey, K., Ali, H.: On the robustness of the biological correlation network model. In: International Conference on Bioinformatics Models, Methods and Algorithms (BIOINFORMATICS 2014), pp. 186–195 (2014)

    Google Scholar 

  13. Dempsey, K., Ali, H.: On the discovery of cellular subsystems in gene correlation networks using measures of centrality. Curr. Bioinform. 8(3), 305–314 (2013)

    Article  Google Scholar 

  14. Dempsey, K., Bhowmick, S., Ali, H.: Function-preserving filters for sampling in biological networks. Procedia Comput. Sci. 9, 587–595 (2012). doi:10.1016/j.procs.2012.04.063

    Article  Google Scholar 

  15. Dempsey, K., Duraisamy, K., Bhowmick, S., Ali, H.: The development of parallel adaptive sampling algorithms for analyzing biological networks. In: 2013 IEEE International Symposium on Parallel and Distributed Processing, Workshops and PhD Forum, pp. 725–734. doi:10.1109/IPDPSW.2012.90 (2012)

  16. Dempsey, K., Thapa, I., Cortes, C., Eriksen, Z., Bastola, D.K., Ali, H.: On mining biological signals using correlation networks. In: 2013 IEEE 13th International Conference on Data Mining Workshops, pp. 327–334. doi:10.1109/ICDMW.201 (2013)

  17. Khazanchi, R., Dempsey, K., Thapa, I., Ali, H.: On identifying and analyzing significant nodes in protein-protein interaction networks. In: 2013 IEEE 13th International Conference on Data Mining Workshops, pp. 343–348. doi:10.1109/ICD (2013)

  18. Barrett, T., Wilhite, S.E., Ledoux, P., et al.: NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res. 41(Database issue), D991–D9915 (2013). doi:10.1093/nar/gks1193

    Article  Google Scholar 

  19. Backes, C., Keller, A., Kuentzer, J., et al.: GeneTrail–advanced gene set enrichment analysis. Nucleic Acids Res. 35(Web Server issue), W186–W192 (2007). doi:10.1093/nar/gks1193

    Article  Google Scholar 

  20. Jiang, P., Singh, M.: SPICi: a fast clustering algorithm for large biological networks. Bioinformatics 26(8), 1105–1111 (2010). doi:10.1093/bioinformatics/btq078

    Article  Google Scholar 

  21. Ashburner, M., Ball, C.A., Blake, J.A., et al.: Gene ontology: tool for the unification of biology. the gene ontology consortium. Nat. Genet. 25(1), 25–29 (2000). doi:10.1038/75556

    Article  Google Scholar 

  22. Aoki, K.F., Kanehisa, M.: Using the KEGG database resource. Curr. Protoc. Bioinform. Chapter 1: Unit 1.12. 10.1002/0471250953.bi0112s11 (2005)

  23. Kriete, A., Mayo, K.L.: Atypical pathways of NF-kappaB activation and aging. Exp. Gerontol. 44(4), 250–255 (2009). doi:10.1016/j.exger.2008.12.005

    Article  Google Scholar 

  24. Deane, R., Du Yan, S., Submamaryan, R.K., et al.: RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat. Med. 9(7), 907–913 (2003). doi:10.1038/nm890

    Article  Google Scholar 

  25. Leclerc, E., Sturchler, E., Vetter, S.W., Heizmann, C.W.: Crosstalk between calcium, amyloid beta and the receptor for advanced glycation endproducts in alzheimer’s disease. Rev. Neurosci. 20(2), 95–110 (2009)

    Google Scholar 

  26. Arancio, O., Zhang, H.P., Chen, X., et al.: RAGE potentiates abeta-induced perturbation of neuronal function in transgenic mice. EMBO J. 23(20), 4096–4105 (2004). doi:10.1038/sj.emboj.7600415

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hesham Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Cooper, K.M., Bonasera, S., Ali, H. (2015). Evaluating the Robustness of Correlation Network Analysis in the Aging Mouse Hypothalamus. In: Fred, A., Gamboa, H., Elias, D. (eds) Biomedical Engineering Systems and Technologies. BIOSTEC 2015. Communications in Computer and Information Science, vol 574. Springer, Cham. https://doi.org/10.1007/978-3-319-27707-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27707-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27706-6

  • Online ISBN: 978-3-319-27707-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics