Skip to main content

Altered Ion Channel/Receptor Expression and Function in Extrinsic Sensory Neurons: The Cause of and Solution to Chronic Visceral Pain?

  • Chapter
  • First Online:
The Enteric Nervous System

Part of the book series: Advances in Experimental Medicine and Biology ((ANS,volume 891))

Abstract

The gastrointestinal tract is unique in that it is innervated by several distinct populations of neurons, whose cell bodies are either intrinsic (enteric, viscerofugal) or extrinsic (sympathetic, sensory afferents) to the wall of the gut. We are usually completely unaware of the continuous, complicated orchestra of functions that these neurons conduct. However, for patients with Inflammatory Bowel Disease (IBD) or functional gastrointestinal disorders, such as Functional Dyspepsia (FD) and Irritable Bowel Syndrome (IBS) altered gastrointestinal motility, discomfort and pain are common, debilitating symptoms. Whilst bouts of inflammation underlie the symptoms associated with IBD, over the past few years there is increased pre-clinical and clinical evidence that infection and inflammation are key risk factors for the development of several functional gastrointestinal disorders, in particular IBS. There is a strong correlation between prior exposure to gut infection and symptom occurrence; with the duration and severity of the initial illness the strongest associated risk factors. This review discusses the current body of evidence for neuroplasticity during inflammation and how in many cases fails to reset back to normal, long after healing of the damaged tissues. Recent evidence suggests that the altered expression and function of key ion channels and receptors within extrinsic sensory neurons play fundamental roles in the aberrant pain sensation associated with these gastrointestinal diseases and disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam B et al (2006) Severity of mucosal inflammation as a predictor for alterations of visceral sensory function in a rat model. Pain 123:179–186

    Article  PubMed  Google Scholar 

  • Al-Chaer ED, Kawasaki M, Pasricha PJ (2000) A new model of chronic visceral hypersensitivity in adult rats induced by colon irritation during postnatal development. Gastroenterology 119:1276–1285

    Article  CAS  PubMed  Google Scholar 

  • Antalis TM, Shea-Donohue T, Vogel SN, Sears C, Fasano A (2007) Mechanisms of disease: protease functions in intestinal mucosal pathobiology. Nat Clin Pract Gastroenterol Hepatol 4:393–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auge C, Balz-Hara D, Steinhoff M, Vergnolle N, Cenac N (2009) Protease-activated receptor-4 (PAR 4): a role as inhibitor of visceral pain and hypersensitivity. Neurogastroenterol Motil 21:1189-e107

    Article  PubMed  Google Scholar 

  • Barbara G, De Giorgio R, Stanghellini V, Cremon C, Corinaldesi R (2002) A role for inflammation in irritable bowel syndrome? Gut 51:i41–i44

    Article  PubMed  PubMed Central  Google Scholar 

  • Barbara G et al (2004) Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology 126:693–702

    Article  PubMed  Google Scholar 

  • Barbara G et al (2007) Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology 132:26–37

    Article  CAS  PubMed  Google Scholar 

  • Bertiaux-Vandaele N et al (2011) The expression and the cellular distribution of the tight junction proteins are altered in irritable bowel syndrome patients with differences according to the disease subtype. Am J Gastroenterol 106:2165–2173

    Article  CAS  PubMed  Google Scholar 

  • Beyak MJ (2010) Visceral afferents – determinants and modulation of excitability. Auton Neurosci 153:69–78

    Article  CAS  PubMed  Google Scholar 

  • Beyak MJ, Vanner S (2005) Inflammation-induced hyperexcitability of nociceptive gastrointestinal DRG neurones: the role of voltage-gated ion channels. Neurogastroenterol Motil 17:175–186

    Article  CAS  PubMed  Google Scholar 

  • Beyak MJ, Ramji N, Krol KM, Kawaja MD, Vanner SJ (2004) Two TTX-resistant Na+ currents in mouse colonic dorsal root ganglia neurons and their role in colitis-induced hyperexcitability. Am J Physiol Gastrointest Liver Physiol 287:G845–G855

    Article  CAS  PubMed  Google Scholar 

  • Bielefeldt K, Ozaki N, Gebhart GF (2002a) Mild gastritis alters voltage-sensitive sodium currents in gastric sensory neurons in rats. Gastroenterology 122:752–761

    Article  CAS  PubMed  Google Scholar 

  • Bielefeldt K, Ozaki N, Gebhart GF (2002b) Experimental ulcers alter voltage-sensitive sodium currents in rat gastric sensory neurons. Gastroenterology 122:394–405

    Article  CAS  PubMed  Google Scholar 

  • Blackshaw LA, Brierley SM, Hughes PA (2010) TRP channels: new targets for visceral pain. Gut 59:126–135

    Article  CAS  PubMed  Google Scholar 

  • Brierley SM (2010) Molecular basis of mechanosensitivity. Auton Neurosci 153:58–68

    Article  CAS  PubMed  Google Scholar 

  • Brierley SM, Kelber O (2011) Use of natural products in gastrointestinal therapies. Curr Opin Pharmacol 11:604–611

    Article  CAS  PubMed  Google Scholar 

  • Brierley SM, Linden DR (2014) Neuroplasticity and dysfunction after gastrointestinal inflammation. Nat Rev Gastroenterol Hepatol 11:611–627

    PubMed  Google Scholar 

  • Brierley SM, Jones RCW III, Xu L, Gebhart GF, Blackshaw LA (2005a) Activation of splanchnic and pelvic colonic afferents by bradykinin in mice. Neurogastroenterol Motil 17:854–862

    Article  CAS  PubMed  Google Scholar 

  • Brierley SM et al (2005b) Differential chemosensory function and receptor expression of splanchnic and pelvic colonic afferents in mice. J Physiol 567:267–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brierley SM et al (2008) Selective role for TRPV4 ion channels in visceral sensory pathways. Gastroenterology 134:2059–2069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brierley SM et al (2009) The ion channel TRPA1 is required for normal mechanosensation and is modulated by algesic stimuli. Gastroenterology 137:2084–2095.e3

    Google Scholar 

  • Brierley SM et al (2011) TRPA1 contributes to specific mechanically activated currents and sensory neuron mechanical hypersensitivity. J Physiol 589:3575–3593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cattaruzza F et al (2009) Transient receptor potential ankyrin-1 has a major role in mediating visceral pain in mice. Am J Physiol Gastrointest Liver Physiol 298:G81–G91

    Article  PubMed  PubMed Central  Google Scholar 

  • Cattaruzza F et al (2011) Cathepsin S is activated during colitis and causes visceral hyperalgesia by a PAR2-dependent mechanism in mice. Gastroenterology 141:1864–1874, e1–3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cenac N et al (2008) Transient receptor potential vanilloid-4 has a major role in visceral hypersensitivity symptoms. Gastroenterology 135:937–946, 946.e1–2

    Google Scholar 

  • Cenac N et al (2010) Potentiation of TRPV4 signalling by histamine and serotonin: an important mechanism for visceral hypersensitivity. Gut 59:481–488

    Article  CAS  PubMed  Google Scholar 

  • Christianson JA, Bielefeldt K, Malin SA, Davis BM (2010) Neonatal colon insult alters growth factor expression and TRPA1 responses in adult mice. Pain 151:540–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coldwell JR, Phillis BD, Sutherland K, Howarth GS, Blackshaw LA (2007) Increased responsiveness of rat colonic splanchnic afferents to 5-HT after inflammation and recovery. J Physiol 579:203–213

    Article  CAS  PubMed  Google Scholar 

  • Costigan M, Scholz J, Woolf CJ (2009) Neuropathic pain: a maladaptive response of the nervous system to damage. Annu Rev Neurosci 32:1–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Aldebert E et al (2011) Transient receptor potential vanilloid 4 activated inflammatory signals by intestinal epithelial cells and colitis in mice. Gastroenterology 140:275–285

    Article  PubMed  Google Scholar 

  • Dang K, Bielefeldt K, Gebhart GF (2004) Gastric ulcers reduce A-type potassium currents in rat gastric sensory ganglion neurons. Am J Physiol Gastrointest Liver Physiol 286:G573–G579

    Article  CAS  PubMed  Google Scholar 

  • de Araujo AD et al (2014) Selenoether oxytocin analogues have analgesic properties in a mouse model of chronic abdominal pain. Nat Commun 5, 3165

    Article  PubMed  Google Scholar 

  • De Schepper HU et al (2008a) TRPV1 receptors on unmyelinated C-fibres mediate colitis-induced sensitization of pelvic afferent nerve fibres in rats. J Physiol 586:5247–5258

    Article  PubMed  PubMed Central  Google Scholar 

  • De Schepper HU et al (2008b) TRPV1 receptor signaling mediates afferent nerve sensitization during colitis-induced motility disorders in rats. Am J Physiol Gastrointest Liver Physiol 294:G245–G253

    Article  PubMed  Google Scholar 

  • Dinan TG, Cryan J, Shanahan F, Keeling PW, Quigley EM (2010) IBS: an epigenetic perspective. Nat Rev Gastroenterol Hepatol 7:465–471

    Article  PubMed  Google Scholar 

  • Donovan J, Grundy D (2012) Endocannabinoid modulation of jejunal afferent responses to LPS. Neurogastroenterol Motil 24:956-e465

    Article  PubMed  Google Scholar 

  • Dunlop SP, Jenkins D, Neal KR, Spiller RC (2003) Relative importance of enterochromaffin cell hyperplasia, anxiety, and depression in postinfectious IBS. Gastroenterology 125:1651–1659

    Article  PubMed  Google Scholar 

  • Dunlop SP et al (2006) Abnormal intestinal permeability in subgroups of diarrhea-predominant irritable bowel syndromes. Am J Gastroenterol 101:1288–1294

    Article  PubMed  Google Scholar 

  • Eijkelkamp N et al (2007) Increased visceral sensitivity to capsaicin after DSS-induced colitis in mice: spinal cord c-Fos expression and behavior. Am J Physiol Gastrointest Liver Physiol 293:G749–G757

    Article  CAS  PubMed  Google Scholar 

  • Eijkelkamp N et al (2009) G protein-coupled receptor kinase 6 controls post-inflammatory visceral hyperalgesia. Brain Behav Immun 23:18–26

    Article  CAS  PubMed  Google Scholar 

  • Engel MA et al (2011) TRPA1 and substance P mediate colitis in mice. Gastroenterology 141:1346–1358

    Article  CAS  PubMed  Google Scholar 

  • Fasano A, Shea-Donohue T (2005) Mechanisms of disease: the role of intestinal barrier function in the pathogenesis of gastrointestinal autoimmune diseases. Nat Clin Pract Gastroenterol Hepatol 2:416–422

    Article  CAS  PubMed  Google Scholar 

  • Feng B, Gebhart GF (2011) Characterization of silent afferents in the pelvic and splanchnic innervations of the mouse colorectum. Am J Physiol Gastrointest Liver Physiol 300:G170–G180

    Article  CAS  PubMed  Google Scholar 

  • Feng B et al (2012a) Long-term sensitization of mechanosensitive and -insensitive afferents in mice with persistent colorectal hypersensitivity. Am J Physiol Gastrointest Liver Physiol 302:G676–G683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng B et al (2012b) Altered colorectal afferent function associated with TNBS-induced visceral hypersensitivity in mice. Am J Physiol Gastrointest Liver Physiol 303:G817–G824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furness JB (2012) The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol 9:286–294

    Article  CAS  PubMed  Google Scholar 

  • Gebhart GF, Bielefeldt K, Ozaki N (2002) Gastric hyperalgesia and changes in voltage gated sodium channel function in the rat. Gut 51(Suppl 1):i15–i18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanevik K, Dizdar V, Langeland N, Hausken T (2009) Development of functional gastrointestinal disorders after Giardia lamblia infection. BMC Gastroenterol 9:27

    Google Scholar 

  • Harrington AM et al (2012) Sprouting of colonic afferent central terminals and increased spinal mitogen-activated protein kinase expression in a mouse model of chronic visceral hypersensitivity. J Comp Neurol 520:2241–2255

    Article  CAS  PubMed  Google Scholar 

  • Hillsley K et al (2006) Dissecting the role of sodium currents in visceral sensory neurons in a model of chronic hyperexcitability using Nav1.8 and Nav1.9 null mice. J Physiol 576:257–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong S et al (2009) Reciprocal changes in vanilloid (TRPV1) and endocannabinoid (CB1) receptors contribute to visceral hyperalgesia in the water avoidance stressed rat. Gut 58:202–210

    Article  CAS  PubMed  Google Scholar 

  • Hughes PA, Brierley SM, Blackshaw LA (2009a) Post-inflammatory modification of colonic afferent mechanosensitivity. Clin Exp Pharmacol Physiol 36:1034–1040

    Article  CAS  PubMed  Google Scholar 

  • Hughes PA et al (2009b) Post-inflammatory colonic afferent sensitisation: different subtypes, different pathways and different time courses. Gut 58:1333–1341

    Article  CAS  PubMed  Google Scholar 

  • Hughes PA et al (2009c) TRPV1-expressing sensory fibres and IBS: links with immune function. Gut 58:465–466

    Article  CAS  PubMed  Google Scholar 

  • Hughes PA et al (2013) Sensory neuro-immune interactions differ between Irritable Bowel Syndrome subtypes. Gut 62:1456–1465

    Article  CAS  PubMed  Google Scholar 

  • Hughes PA et al (2014) Increased kappa-opioid receptor expression and function during chronic visceral hypersensitivity. Gut 63:1199–1200

    Article  PubMed  Google Scholar 

  • Ibeakanma C, Vanner S (2010) TNFalpha is a key mediator of the pronociceptive effects of mucosal supernatant from human ulcerative colitis on colonic DRG neurons. Gut 59:612–621

    Article  CAS  PubMed  Google Scholar 

  • Ibeakanma C et al (2009) Citrobacter rodentium colitis evokes post-infectious hyperexcitability of mouse nociceptive colonic dorsal root ganglion neurons. J Physiol 587:3505–3521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibeakanma C et al (2011) Brain-gut interactions increase peripheral nociceptive signaling in mice with postinfectious irritable bowel syndrome. Gastroenterology 141:2098–2108.e5

    Google Scholar 

  • Jones RC 3rd, Xu L, Gebhart GF (2005) The mechanosensitivity of mouse colon afferent fibers and their sensitization by inflammatory mediators require transient receptor potential vanilloid 1 and acid-sensing ion channel 3. J Neurosci 25:10981–10989

    Article  CAS  PubMed  Google Scholar 

  • Jones RC 3rd et al (2007) Short-term sensitization of colon mechanoreceptors is associated with long-term hypersensitivity to colon distention in the mouse. Gastroenterology 133:184–194

    Article  PubMed  Google Scholar 

  • Karanjia R, Spreadbury I, Bautista-Cruz F, Tsang ME, Vanner S (2009) Activation of protease-activated receptor-4 inhibits the intrinsic excitability of colonic dorsal root ganglia neurons. Neurogastroenterol Motil 21:1218–1221

    Article  CAS  PubMed  Google Scholar 

  • Kaser A, Zeissig S, Blumberg RS (2010) Inflammatory bowel disease. Annu Rev Immunol 28:573–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kayssi A, Amadesi S, Bautista F, Bunnett NW, Vanner S (2007) Mechanisms of protease-activated receptor 2-evoked hyperexcitability of nociceptive neurons innervating the mouse colon. J Physiol 580:977–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keating C et al (2008) Afferent hypersensitivity in a mouse model of post-inflammatory gut dysfunction: role of altered serotonin metabolism. J Physiol 586:4517–4530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keating C, Pelegrin P, Martinez CM, Grundy D (2011) P2X7 receptor-dependent intestinal afferent hypersensitivity in a mouse model of postinfectious irritable bowel syndrome. J Immunol 187:1467–1474

    Article  CAS  PubMed  Google Scholar 

  • King DE, Macleod RJ, Vanner SJ (2009) Trinitrobenzenesulphonic acid colitis alters Na 1.8 channel expression in mouse dorsal root ganglia neurons. Neurogastroenterol Motil 21:880-e64

    Article  PubMed  Google Scholar 

  • La JH, Gebhart GF (2011) Colitis decreases mechanosensitive K2P channel expression and function in mouse colon sensory neurons. Am J Physiol Gastrointest Liver Physiol 301:G165–G174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laird J, Martinez-Caro L, Garcia-Nicas E, Cervero F (2001) A new model of visceral pain and referred hyperalgesia in the mouse. Pain 92:335–342

    Article  CAS  PubMed  Google Scholar 

  • Laird JM, Souslova V, Wood JN, Cervero F (2002) Deficits in visceral pain and referred hyperalgesia in Nav1.8 (SNS/PN3)-null mice. J Neurosci 22:8352–8356

    CAS  PubMed  Google Scholar 

  • Lamb K, Zhong F, Gebhart GF, Bielefeldt K (2005) Experimental colitis in mice and sensitization of converging visceral and somatic afferent pathways. Am J Physiol Gastrointest Liver Physiol 290(3):G451–G457

    Article  PubMed  Google Scholar 

  • Larauche M, Mulak A, Tache Y (2012) Stress and visceral pain: from animal models to clinical therapies. Exp Neurol 233:49–67

    Article  PubMed  Google Scholar 

  • Larsson MH, Rapp L, Lindstrom E (2006) Effect of DSS-induced colitis on visceral sensitivity to colorectal distension in mice. Neurogastroenterol Motil 18:144–152

    Article  CAS  PubMed  Google Scholar 

  • Larsson MH, Miketa A, Martinez V (2009) Lack of interaction between psychological stress and DSS-induced colitis affecting colonic sensitivity during colorectal distension in mice. Stress 12:434–444

    Article  CAS  PubMed  Google Scholar 

  • Liebregts T et al (2007) Immune activation in patients with irritable bowel syndrome. Gastroenterology 132:913–920

    Article  CAS  PubMed  Google Scholar 

  • Liebregts T et al (2011) Small bowel homing T cells are associated with symptoms and delayed gastric emptying in functional dyspepsia. Am J Gastroenterol 106:1089–1098

    Article  CAS  PubMed  Google Scholar 

  • Liu LS et al (2008) A rat model of chronic gastric sensorimotor dysfunction resulting from transient neonatal gastric irritation. Gastroenterology 134:2070–2079

    Article  PubMed  Google Scholar 

  • Liu CY, Mueller MH, Rogler G, Grundy D, Kreis ME (2009) Differential afferent sensitivity to mucosal lipopolysaccharide from Salmonella typhimurium and Escherichia coli in the rat jejunum. Neurogastroenterol Motil 21:1335-e129

    Article  PubMed  Google Scholar 

  • Liu LS, Shenoy M, Pasricha PJ (2011) The analgesic effects of the GABAB receptor agonist, baclofen, in a rodent model of functional dyspepsia. Neurogastroenterol Motil 23:356–361, e160–1

    Article  CAS  PubMed  Google Scholar 

  • Lynn PA, Chen BN, Zagorodnyuk VP, Costa M, Brookes SJ (2008) TNBS-induced inflammation modulates the function of one class of low-threshold rectal mechanoreceptors in the guinea pig. Am J Physiol Gastrointest Liver Physiol 295:G862–G871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall JK et al (2010) Eight year prognosis of postinfectious irritable bowel syndrome following waterborne bacterial dysentery. Gut 59:605–611

    Article  PubMed  Google Scholar 

  • Martinez V, Melgar S (2008) Lack of colonic-inflammation-induced acute visceral hypersensitivity to colorectal distension in Na(v)1.9 knockout mice. Eur J Pain 12:934–944

    Article  CAS  PubMed  Google Scholar 

  • Miranda A et al (2007) The role of transient receptor potential vanilloid 1 in mechanical and chemical visceral hyperalgesia following experimental colitis. Neuroscience 148:1021–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore BA, Stewart TM, Hill C, Vanner SJ (2002) TNBS ileitis evokes hyperexcitability and changes in ionic membrane properties of nociceptive DRG neurons. Am J Physiol Gastrointest Liver Physiol 282:G1045–G1051

    Article  CAS  PubMed  Google Scholar 

  • Nell S, Suerbaum S, Josenhans C (2010) The impact of the microbiota on the pathogenesis of IBD: lessons from mouse infection models. Nat Rev Microbiol 8:564–577

    Article  CAS  PubMed  Google Scholar 

  • Ochoa-Cortes F et al (2010) Bacterial cell products signal to mouse colonic nociceptive dorsal root ganglia neurons. Am J Physiol Gastrointest Liver Physiol 299:G723–G732

    Article  CAS  PubMed  Google Scholar 

  • Ohman L, Simren M (2010) Pathogenesis of IBS: role of inflammation, immunity and neuroimmune interactions. Nat Rev Gastroenterol Hepatol 7:163–173

    Article  PubMed  Google Scholar 

  • Sengupta JN, Snider A, Su X, Gebhart GF (1999) Effects of kappa opioids in the inflamed rat colon. Pain 79:175–185

    Article  CAS  PubMed  Google Scholar 

  • Shinoda M, La JH, Bielefeldt K, Gebhart GF (2010) Altered purinergic signaling in colorectal dorsal root ganglion neurons contributes to colorectal hypersensitivity. J Neurophysiol 104:3113–3123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sipe WEB et al (2008) Transient receptor potential vanilloid 4 mediates protease activated receptor 2-induced sensitization of colonic afferent nerves and visceral hyperalgesia. Am J Physiol Gastrointest Liver Physiol 294:G1288–G1298

    Article  CAS  PubMed  Google Scholar 

  • Spiller R, Garsed K (2009) Infection, inflammation, and the irritable bowel syndrome. Dig Liver Dis 41:844–849

    Article  CAS  PubMed  Google Scholar 

  • Spiller RC et al (2000) Increased rectal mucosal enteroendocrine cells, T lymphocytes, and increased gut permeability following acute Campylobacter enteritis and in post-dysenteric irritable bowel syndrome. Gut 47:804–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart T, Beyak MJ, Vanner S (2003) Ileitis modulates potassium and sodium currents in guinea pig dorsal root ganglia sensory neurons. J Physiol 552:797–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thabane M, Simunovic M, Akhtar-Danesh N, Garg AX, Clark WF, Collins SM, Salvadori M, Marshall JK (2010) An outbreak of acute bacterial gastroenteritis is associated with an increased incidence of irritable bowel syndrome in children. Am J Gastroenterol 105(4):933–939

    Article  PubMed  Google Scholar 

  • Traub RJ et al (2008) A rat model of chronic postinflammatory visceral pain induced by deoxycholic acid. Gastroenterology 135:2075–2083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner JR (2009) Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 9:799–809

    Article  CAS  PubMed  Google Scholar 

  • Valdez-Morales E et al (2013) Release of endogenous opioids during a chronic IBD model suppresses the excitability of colonic DRG neurons. Neurogastroenterol Motil 25:39–45.e4

    Article  CAS  PubMed  Google Scholar 

  • Vergnolle N et al (2010) A role for transient receptor potential vanilloid 4 in tonicity-induced neurogenic inflammation. Br J Pharmacol 159:1161–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma-Gandhu M et al (2006) CD4+ T-cell modulation of visceral nociception in mice. Gastroenterology 130:1721–1728

    Article  CAS  PubMed  Google Scholar 

  • Verma-Gandhu M et al (2007) Visceral pain perception is determined by the duration of colitis and associated neuropeptide expression in the mouse. Gut 56:358–364

    Article  CAS  PubMed  Google Scholar 

  • Wang B et al (2005) Lipopolysaccharide-induced changes in mesenteric afferent sensitivity of rat jejunum in vitro: role of prostaglandins. Am J Physiol Gastrointest Liver Physiol 289:G254–G260

    Article  CAS  PubMed  Google Scholar 

  • Winston J, Shenoy M, Medley D, Naniwadekar A, Pasricha PJ (2007) The vanilloid receptor initiates and maintains colonic hypersensitivity induced by neonatal colon irritation in rats. Gastroenterology 132:615–627

    Article  CAS  PubMed  Google Scholar 

  • Winston JH, Xu GY, Sarna SK (2010) Adrenergic stimulation mediates visceral hypersensitivity to colorectal distension following heterotypic chronic stress. Gastroenterology 138:294–304.e3

    Google Scholar 

  • Xu GY, Shenoy M, Winston JH, Mittal S, Pasricha PJ (2008) P2X receptor-mediated visceral hyperalgesia in a rat model of chronic visceral hypersensitivity. Gut 57:1230–1237

    Article  CAS  PubMed  Google Scholar 

  • Yang J et al (2008) Transient receptor potential ankyrin-1 participates in visceral hyperalgesia following experimental colitis. Neurosci Lett 440:237–241

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A/Prof Stuart Brierley is supported by an NHMRC R.D. Wright Fellowship and by NHMRC Australia Project grants (1083480, 1063803, 1049928 and 1049682).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart Brierley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brierley, S. (2016). Altered Ion Channel/Receptor Expression and Function in Extrinsic Sensory Neurons: The Cause of and Solution to Chronic Visceral Pain?. In: Brierley, S., Costa, M. (eds) The Enteric Nervous System. Advances in Experimental Medicine and Biology(), vol 891. Springer, Cham. https://doi.org/10.1007/978-3-319-27592-5_9

Download citation

Publish with us

Policies and ethics