Skip to main content

Enteric Inhibitory Neurotransmission, Starting Down Under

  • Chapter
  • First Online:
The Enteric Nervous System

Part of the book series: Advances in Experimental Medicine and Biology ((ANS,volume 891))

Abstract

The idea of an inhibitory innervation in the gut came from Geoff Burnstock’s group at the University of Melbourne in the 1960s. Being resistant to antagonists of norepinephrine and acetylcholine, enteric inhibitory neurotransmission became known as non-cholinergic, non-adrenergic (NANC) neurotransmission. ATP (or a closely related nucleotide) was proposed as the inhibitory neurotransmitter based on release of purines during nerve stimulation and similarities between responses to ATP and transmural nerve stimulation in several gut preparations. Apamin was found to block purinergic responses, providing evidence that small-conductance Ca2+-activated K+ (SK) channels were responsible for inhibitory junction potentials (IJPs). Actually the IJPs in GI muscles are composed of multiple components, and later studies discovered nitric oxide (NO) to be the other major mediator of NANC inhibitory neurotransmission. The purinergic component of enteric inhibitory neurotransmission is mediated by P2Y1 receptors, and this component is absent in P2Y1−/− mice. The criteria for a neurotransmitter are better met by β-nicotinamide adenine dinucleotide (β-NAD) or its immediate metabolite ADP-ribose (ADPR) than by ATP. The cells mediating post-junctional responses have been identified. In addition to smooth muscle cells, two classes of interstitial cells express receptors and effectors for NANC neurotransmitters and are electrically coupled to smooth muscle cells. This integrated structure has been named the SIP syncytium. Interstitial cells of Cajal are involved in transduction of cholinergic and nitrergic inputs to GI muscles, and PDGFRα+ cells mediate purinergic effects. This short symposium report summarizes major historical points of interest and some of the more recent findings related to enteric inhibitory neurotransmission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baker SA, Hennig GW, Salter AK, Kurahashi M, Ward SM, Sanders KM (2013) Distribution and Ca(2+) signalling of fibroblast-like (PDGFR(+)) cells in the murine gastric fundus. J Physiol 591:6193–6208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banks BE, Brown C, Burgess GM, Burnstock G, Claret M, Cocks TM, Jenkinson DH (1979) Apamin blocks certain neurotransmitter-induced increases in potassium permeability. Nature 282:415–417

    Article  CAS  PubMed  Google Scholar 

  • Bennett MR, Burnstock G, Holman M (1966) Transmission from intramural inhibitory nerves to the smooth muscle of the guinea-pig taenia coli. J Physiol 182:541–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhetwal BP, Sanders KM, An C, Trappanese DM, Moreland RS, Perrino BA (2013) Ca2+ sensitization pathways accessed by cholinergic neurotransmission in the murine gastric fundus. J Physiol 591:2971–2986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bult H, Boeckxstaens GE, Pelckmans PA, Jordaens FH, Van Maercke YM, Herman AG (1990) Nitric oxide as an inhibitory non-adrenergic non-cholinergic neurotransmitter. Nature 345:346–347

    Article  CAS  PubMed  Google Scholar 

  • Burns AJ, Lomax AE, Torihashi S, Sanders KM, Ward SM (1996) Interstitial cells of Cajal mediate inhibitory neurotransmission in the stomach. Proc Natl Acad Sci U S A 93:12008–12013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burnstock G, Campbell G, Bennett M, Holman ME (1963) Inhibition of the smooth muscle on the taenia coli. Nature 200:581–582

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G, Campbell G, Satchell D, Smythe A (1970) Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by non-adrenergic inhibitory nerves in the gut. Br J Pharmacol 40:668–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalziel HH, Thornbury KD, Ward SM, Sanders KM (1991) Involvement of nitric oxide synthetic pathway in inhibitory junction potentials in canine proximal colon. Am J Physiol 260:G789–G792

    CAS  PubMed  Google Scholar 

  • Dick JM, Van Molle W, Brouckaert P, Lefebvre RA (2002) Relaxation by vasoactive intestinal polypeptide in the gastric fundus of nitric oxide synthase-deficient mice. J Physiol 538:133–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durnin L, Hwang SJ, Ward SM, Sanders KM, Mutafova-Yambolieva VN (2012) Adenosine 5’-diphosphate-ribose is a neural regulator in primate and murine large intestine along with beta-NAD(+). J Physiol 590:1921–1941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durnin L, Sanders KM, Mutafova-Yambolieva VN (2013) Differential release of beta-NAD(+) and ATP upon activation of enteric motor neurons in primate and murine colons. Neurogastroenterol Motil 25:e194–e204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franck H, Sweeney KM, Sanders KM, Shuttleworth CW (1997) Effects of a novel guanylate cyclase inhibitor on nitric oxide-dependent inhibitory neurotransmission in canine proximal colon. Br J Pharmacol 122:1223–1229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallego D, Hernandez P, Clave P, Jimenez M (2006) P2Y1 receptors mediate inhibitory purinergic neuromuscular transmission in the human colon. Am J Physiol Gastrointest Liver Physiol 291:G584–G594

    Article  CAS  PubMed  Google Scholar 

  • Gallego D, Gil V, Martinez-Cutillas M, Mane N, Martin MT, Jimenez M (2012) Purinergic neuromuscular transmission is absent in the colon of P2Y(1) knocked out mice. J Physiol 590:1943–1956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillespie JS, Liu XR, Martin W (1989) The effects of l-arginine and NG-monomethyl l-arginine on the response of the rat anococcygeus muscle to NANC nerve stimulation. Br J Pharmacol 98:1080–1082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goyal RK, Rattan S, Said SI (1980) VIP as a possible neurotransmitter of non-cholinergic non-adrenergic inhibitory neurones. Nature 288:378–380

    Article  CAS  PubMed  Google Scholar 

  • Grider JR, Rivier JR (1990) Vasoactive intestinal peptide (VIP) as transmitter of inhibitory motor neurons of the gut: evidence from the use of selective VIP antagonists and VIP antiserum. J Pharmacol Exp Ther 253:738–742

    CAS  PubMed  Google Scholar 

  • Groneberg D, Konig P, Koesling D, Friebe A (2011) Nitric oxide-sensitive guanylyl cyclase is dispensable for nitrergic signaling and gut motility in mouse intestinal smooth muscle. Gastroenterology 140:1608–1617

    Article  CAS  PubMed  Google Scholar 

  • Groneberg D, Lies B, Konig P, Jager R, Seidler B, Klein S, Saur D, Friebe A (2013) Cell-specific deletion of nitric oxide-sensitive guanylyl cyclase reveals a dual pathway for nitrergic neuromuscular transmission in the murine fundus. Gastroenterology 145:188–196

    Article  CAS  PubMed  Google Scholar 

  • Hills JM, Collis CS, Burnstock G (1983) The effects of vasoactive intestinal polypeptide on the electrical activity of guinea-pig intestinal smooth muscle. Eur J Pharmacol 88:371–376

    Article  CAS  PubMed  Google Scholar 

  • Hirst GD, Bywater RA, Teramoto N, Edwards FR (2004) An analysis of inhibitory junction potentials in the guinea-pig proximal colon. J Physiol 558:841–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang SJ, Blair PJ, Britton FC, O’Driscoll KE, Hennig G, Bayguinov YR, Rock JR, Harfe BD, Sanders KM, Ward SM (2009) Expression of anoctamin 1/TMEM16A by interstitial cells of Cajal is fundamental for slow wave activity in gastrointestinal muscles. J Physiol 587:4887–4904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang SJ, Durnin L, Dwyer L, Rhee PL, Ward SM, Koh SD, Sanders KM, Mutafova-Yambolieva VN (2011) Beta-nicotinamide adenine dinucleotide is an enteric inhibitory neurotransmitter in human and nonhuman primate colons. Gastroenterology 140:608–617.e6

    Article  CAS  PubMed  Google Scholar 

  • Hwang SJ, Blair PJ, Durnin L, Mutafova-Yambolieva V, Sanders KM, Ward SM (2012) P2Y1 purinoreceptors are fundamental to inhibitory motor control of murine colonic excitability and transit. J Physiol 590:1957–1972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iino S, Nojyo Y (2009) Immunohistochemical demonstration of c-Kit-negative fibroblast-like cells in murine gastrointestinal musculature. Arch Histol Cytol 72:107–115

    Article  CAS  PubMed  Google Scholar 

  • Iino S, Horiguchi K, Nojyo Y, Ward SM, Sanders KM (2009) Interstitial cells of Cajal contain signalling molecules for transduction of nitrergic stimulation in guinea pig caecum. Neurogastroenterol Motil 21:542–550, e512–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keef KD, Saxton SN, McDowall RA, Kaminski RE, Duffy AM, Cobine CA (2013) Functional role of vasoactive intestinal polypeptide in inhibitory motor innervation in the mouse internal anal sphincter. J Physiol 591:1489–1506

    Article  PubMed  PubMed Central  Google Scholar 

  • Klemm MF, Lang RJ (2002) Distribution of Ca2+-activated K+ channel (SK2 and SK3) immunoreactivity in intestinal smooth muscles of the guinea-pig. Clin Exp Pharmacol Physiol 29:18–25

    Article  CAS  PubMed  Google Scholar 

  • Koh SD, Dick GM, Sanders KM (1997) Small-conductance Ca(2+)-dependent K+ channels activated by ATP in murine colonic smooth muscle. Am J Physiol 273:C2010–C2021

    CAS  PubMed  Google Scholar 

  • Koh SD, Monaghan K, Sergeant GP, Ro S, Walker RL, Sanders KM, Horowitz B (2001) TREK-1 regulation by nitric oxide and cGMP-dependent protein kinase. An essential role in smooth muscle inhibitory neurotransmission. J Biol Chem 276:44338–44346

    Article  CAS  PubMed  Google Scholar 

  • Kurahashi M, Zheng H, Dwyer L, Ward SM, Koh SD, Sanders KM (2011) A functional role for the ‘fibroblast-like cells’ in gastrointestinal smooth muscles. J Physiol 589:697–710

    Article  CAS  PubMed  Google Scholar 

  • Mackenzie I, Burnstock G (1980) Evidence against vasoactive intestinal polypeptide being the non-adrenergic, non-cholinergic inhibitory transmitter released from nerves supplying the smooth muscle of the guinea-pig taenia coli. Eur J Pharmacol 67:255–264

    Article  CAS  PubMed  Google Scholar 

  • Mashimo H, Goyal RK (1999) Lessons from genetically engineered animal models. IV. Nitric oxide synthase gene knockout mice. Am J Physiol 277:G745–G750

    CAS  PubMed  Google Scholar 

  • Murthy KS, Grider JR, Jin JG, Makhlouf GM (1996) Interplay of VIP and nitric oxide in the regulation of neuromuscular function in the gut. Ann N Y Acad Sci 805:355–362, discussion 362–363

    Article  CAS  PubMed  Google Scholar 

  • Mutafova-Yambolieva VN, Hwang SJ, Hao X, Chen H, Zhu MX, Wood JD, Ward SM, Sanders KM (2007) Beta-nicotinamide adenine dinucleotide is an inhibitory neurotransmitter in visceral smooth muscle. Proc Natl Acad Sci U S A 104:16359–16364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peri LE, Sanders KM, Mutafova-Yambolieva VN (2013) Differential expression of genes related to purinergic signaling in smooth muscle cells, PDGFRalpha-positive cells, and interstitial cells of Cajal in the murine colon. Neurogastroenterol Motil 25:e609–e620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ro S, Hatton WJ, Koh SD, Horowitz B (2001) Molecular properties of small-conductance Ca2+-activated K+ channels expressed in murine colonic smooth muscle. Am J Physiol Gastrointest Liver Physiol 281:G964–G973

    CAS  PubMed  Google Scholar 

  • Sanders KM, Ward SM (1992) Nitric oxide as a mediator of nonadrenergic noncholinergic neurotransmission. Am J Physiol 262:G379–G392

    CAS  PubMed  Google Scholar 

  • Sanders KM, Koh SD, Ro S, Ward SM (2012) Regulation of gastrointestinal motility – insights from smooth muscle biology. Nat Rev Gastroenterol Hepatol 9:633–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thornbury KD, Ward SM, Dalziel HH, Carl A, Westfall DP, Sanders KM (1991) Nitric oxide and nitrosocysteine mimic nonadrenergic, noncholinergic hyperpolarization in canine proximal colon. Am J Physiol 261:G553–G557

    CAS  PubMed  Google Scholar 

  • Vogalis F, Goyal RK (1997) Activation of small conductance Ca(2+)-dependent K+ channels by purinergic agonists in smooth muscle cells of the mouse ileum. J Physiol 502(Pt 3):497–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward SM, Beckett EA, Wang X, Baker F, Khoyi M, Sanders KM (2000) Interstitial cells of Cajal mediate cholinergic neurotransmission from enteric motor neurons. J Neurosci 20:1393–1403

    CAS  PubMed  Google Scholar 

  • Zhang Y, Paterson WG (2002) Role of Ca2+-activated Cl channels and MLCK in slow IJP in opossum esophageal smooth muscle. Am J Physiol Gastrointest Liver Physiol 283:G104–G114

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Support for this review was provided by P01 DK41315 and R01 DK091336.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenton M. Sanders .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sanders, K.M. (2016). Enteric Inhibitory Neurotransmission, Starting Down Under. In: Brierley, S., Costa, M. (eds) The Enteric Nervous System. Advances in Experimental Medicine and Biology(), vol 891. Springer, Cham. https://doi.org/10.1007/978-3-319-27592-5_3

Download citation

Publish with us

Policies and ethics