Skip to main content

Assessment of Inverse and Direct Methods for Airfoil and Wing Design

  • Conference paper
  • First Online:
Simulation-Driven Modeling and Optimization

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 153))

  • 1191 Accesses

Abstract

The goal of aerodynamic design for airfoils and wings is to improve the performance of the lifting surfaces, e.g., by minimizing the drag. We consider here two approaches, the classical inverse design approach that finds the surface which produces desired pressure distributions, and the direct mathematical optimization based on local parameter searches, that is usually enabled by fast gradient computation, for example, by the adjoint method. The hybrid approach is to combine both of them. Each approach has its own pros and cons. In this chapter the approaches are assessed by application to the design of transonic RAE2822 airfoil and ONERA M6 wing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This section is adapted from [5, 18].

  2. 2.

    www.foi.se/en/Customer--Partners/.../Edge1/Edge/.

  3. 3.

    http://www.aiaa.org/.

  4. 4.

    1 drag count is defined as 104 drag coefficient; 1 lift count is defined as 103 lift coefficient.

References

  1. Sobieszczanski-Sobieski, J.: Multidisciplinary Design Optimization: An Emerging New Engineering Discipline. Kluwer Academic, Boston (1995)

    Google Scholar 

  2. Kroo, I.M.: Multidisciplinary Design Optimization: State-of-the-Art, chapter MDO for Large-Scale Design, pp. 22–44. SIAM, Philadelphia (1997)

    Google Scholar 

  3. Vassberg, J.C., Jameson, A.: Influence of shape parametrization on aerodynamic shape optimization. Technical report, Brussels, Belgium (2014) Von Karman Institute Lecture-III

    Google Scholar 

  4. Castonguay, P., Nadarjah, S.K.: Effect of shape parameterization on aerodynamic shape optimization. In: 45th AIAA Aerospace Sciences Meeting and Exhibit, 2007-59, Reno, Nevada (2007)

    Google Scholar 

  5. Zhang, M.: Contributions to Variable Fidelity MDO Framework for Collaborative and Integrated Aircraft Design. Doctoral thesis, Department. Aeronautics, KTH Kungl. Tekniska Högskolan (2015)

    Google Scholar 

  6. Griva, I., Nash, S.G., Sofer, A.: Linear and Nonlinear Optimization, 2nd edn. Society for Industrial Applied Mathematics, Philadelphia (2009)

    Book  MATH  Google Scholar 

  7. Campbell, R.L., Smith, L.A.: A hybrid algorithm for transonic airfoil and wing design. In: AIAA Aerospace Sciences Meeting, 87-2552 (1987)

    Google Scholar 

  8. Lamar, J.E.: A vortex-lattice method for the mean camber shapes of trimmed non-coplanar planforms with minimum vortex drag. Technical report, Washington, DC (1976). NASA TN D-8090

    Google Scholar 

  9. Barger, R.L., Jr. Brooks, C.W.: A streamline curvature method for design of supercritical and subcritical airfoils. Technical report (1974) NASA TN D-7770

    Google Scholar 

  10. Drela, M.: A user’s guide to lindop v2.50. Technical report (1996)

    Google Scholar 

  11. Drela, M.: Lindop optimization procedures. Technical report, Computational Aerospace Sciences Laboratory, MIT Department of Aeronautics and Astronautics (1993). Technical Report

    Google Scholar 

  12. Drela, M.: Newton solution of coupled viscous/inviscid multielement airfoil flows. In: AIAA Aerospace Sciences Meeting, 90-1470 (1990)

    Google Scholar 

  13. Jameson, A.: Aerodynamic design via control theory. J. Sci. Comput. 3, 233–260 (1998)

    Article  Google Scholar 

  14. Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, New York (1971)

    Book  MATH  Google Scholar 

  15. Palacios, F., Colonno, M.R., Aranake, A.C., Campos, A., Copeland, S.R., Economon, T.D., Lonkar, A.K., Lukaczyk, T.W., Taylor, T.W.R., Alonso, J.: Stanford University Unstructured (SU2): an open-source integrated computational environment for multi-physics simulation and design. In: 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA 2013-0287, Grapevine, 7–10 Jan (2013)

    Google Scholar 

  16. Nadarajah, S.K., Jameson, A.: A comparison of the continuous and discrete adjoint approach to automatic aerodynamic optimization. In: 38th Aerospace Sciences Meeting, AIAA 2000-0667 (2000)

    Google Scholar 

  17. Palacios, F., Economon, T.D., Wendorff, A.D., Alonso, J.: Large-scale aircraft design using SU2. In: 53st AIAA Aerospace Sciences Meeting, AIAA 2015-1946, Kissimmee, Florida, 5–9 Jan (2015)

    Google Scholar 

  18. Zhang, M., Rizzi, A., Nangia, R.: Transonic airfoil and wing design using inverse and direct methods. In: AIAA SciTech, AIAA 2015-1934, Kissimmee, Florida, 5–9 Jan (2015)

    Google Scholar 

  19. Dulikravich, G.S., Baker, D.P.: Aerodynamic shape inverse design using a Fourier series method. In: AIAA Aerospace Sciences Meeting, AIAA 90-0185 (1990)

    Google Scholar 

  20. Campbell, R.L.: An approach to constrained aerodynamic design with application to airfoils. Technical report

    Google Scholar 

  21. Obayashi, S.: Genetic optimization of target pressure distributions for inverse design methods. In: AIAA Aerospace Sciences Meeting, AIAA-95-1649-CP (1995)

    Google Scholar 

  22. Streit, T., Wichmann, G., Von Knoblauch Zu Hatzbach, F., Campbell, R.: Implications of conical flow for laminar wing design and analysis. In: 29th AIAA Applied Aerodynamics Conference, AIAA 2011-3808 (2011)

    Google Scholar 

  23. Zhang, M., Wang, C., Rizzi, A., Nangia, R.: Hybrid feedback design for subsonic and transonic airfoils and wings. In: AIAA SciTech, AIAA 2014-0414, National Harbor, Maryland, 13–17 Jan (2014)

    Google Scholar 

  24. Takanashi, S.: An iterative procedure for three-dimensional transonic wing design by the integral equation method. In: AIAA 2nd Applied Aerodynamic Conference, AIAA-84-2155, Seattle, Washington, 21–23 August 1984

    Google Scholar 

  25. Mark Drela, M., Giles, M.B.: Viscous-inviscid analysis of transonic and low Reynolds number airfoils. AIAA J. 25(10), 1347–1355 (1987)

    Article  MATH  Google Scholar 

  26. Drela, M.: Design and optimization method for multi-element airfoils. In: AIAA Aerospace Sciences Meeting, 93-0969 (1993)

    Google Scholar 

  27. Amoignon, O., Navratil, J., Hradil, J.: Study of parametrization in the project CEDESA. In: AIAA SciTech, 2014-0570, National Harbor, Maryland, (2014)

    Google Scholar 

  28. Jakobsson, S., Amoignon, O.: Mesh deformation using radial basis functions for gradient-based aerodynamic shape optimization. Comput. Fluids 36(6), 1119–1136 (2007)

    Article  MATH  Google Scholar 

  29. Mohammadi, B., Molho, J.I., Santiago, J.G.: Design of minimal dispersion fluidic channels in a CAD-free framework. In: Center for Turbulence Research, Proceedings of the Summer Program 2000

    Google Scholar 

  30. Kenway, G.K.W., Kennedy, G.J., Martins, J.R.R.A.: A CAD-free approach to high-fidelity aerostructural optimization. In: 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference, AIAA 2010–9231, Fort Worth, Texas, 13–15 Sept (2010)

    Google Scholar 

  31. Tomac, M., Eller, D.: From geometry to CFD grids. an automated approach for conceptual design. Prog. Aerosp. Sci. 47(11), 589–596 (2011). doi: 10.1016/j.paerosci.2011.08.005

    Google Scholar 

  32. Gallier, J.: Curves and surfaces in geometric modeling: Theory and algorithms. Technical report, Department of Computer and Information Science, University of Pennsylvania (2013)

    Google Scholar 

  33. Farin, G.E., Hoschek, J., Kim, M.-S.: Handbook of Computer Aided Geometric Design. Elsevier, New York (2002)

    MATH  Google Scholar 

  34. de Boor, C.: A practical guide to splines. Springer, New York (1978)

    Book  MATH  Google Scholar 

  35. Melin, T., Amadori, K., Krus, P.: Parametric wing profile description for conceptual design. In: CEAS Meeting, Venice, Italy (2011)

    Google Scholar 

  36. Dwight, R.P.: Robust mesh deformation using the linear elasticity equations. In: Proceedings of the Fourth International Conference on Computational Fluid Dynamics, ICCFD, Ghent, 10–14 July 2006

    Google Scholar 

  37. Hicks, R., Henne, P.A.: Wing design by numerical optimization. In: AIAA, AIAA 77-1247, Seattle, Washington, 22–24 Aug (1977)

    Google Scholar 

  38. Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. ACM Trans. Math. Softw. 20(4), 151–160 (1986)

    Google Scholar 

  39. Les, P., Wayne, T.: The NURBS Book, 2nd edn. Springer, New York (1997)

    Google Scholar 

  40. Schmitt, V., Charpin, F.: Pressure distributions on the ONERA-M6_Wing at transonic Mach numbers, AGARD AR138 (1979)

    Google Scholar 

  41. Piquet, J.: Turbulent Flows: Models and Physics. Springer, New York (2001)

    Google Scholar 

  42. Lyu, Z., Kenway, G.K.W., Martins, J.R.R.A.: RANS-based aerodynamic shape optimization investigation of the common research model wing. In: 52nd Aerospace Sciences Meeting, AIAA 2014-0567, National Harbor, Maryland, 13–17 Jan 2014. doi: 10.2514/6.2014-0567

    Google Scholar 

  43. Jameson, A.: Aerodynamic shape optimization using the adjoint method. Technical report, Brussels, Belgium (2003) Von Karman Institute Lecture-III

    Google Scholar 

  44. Anderson, J.D.: Computational Fluid Dynamics: The Basic with Applications, International edition, McGraw-Hill, New York (1995)

    Google Scholar 

  45. Van der Velden, A.: The global aircraft shape. In: AGARD-FDP-VKI Special Course at VKI, pp. 9–1–9–11, Rhode-Saint-Genese, April (1994)

    Google Scholar 

Download references

Acknowledgements

Part of the computations were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at PDC Centre for High Performance Computing (PDC-HPC)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengmeng Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, M., Rizzi, A.W. (2016). Assessment of Inverse and Direct Methods for Airfoil and Wing Design. In: Koziel, S., Leifsson, L., Yang, XS. (eds) Simulation-Driven Modeling and Optimization. Springer Proceedings in Mathematics & Statistics, vol 153. Springer, Cham. https://doi.org/10.1007/978-3-319-27517-8_4

Download citation

Publish with us

Policies and ethics