Skip to main content

Current Concepts of Pharmacogenetics, Pharmacogenomics, and the “Druggable” Genome

  • Chapter
  • First Online:
Clinical Pharmacology: Current Topics and Case Studies

Abstract

The “post-genome” era we live in holds the great promise that our steadily growing knowledge on the genetics of interindividual drug response variability will be translated into clinical practice. According to the current intriguing concepts of pharmacogenetics and pharmacogenomics, genetic information of individuals can be used to avoid “trial and error” scenarios during medication. Based on evidence from genomic testing, medicine is expected to evolve from the “one dose fits all” strategy to patient-tailored therapy, which is guided by individualized drug selection and dose optimization: a promising perspective for patient, industries, and health-care providers. The scientific knowledge fueling this vision of a genomic “precision” medicine is expanding rapidly, and outstanding examples already exist of how the outcome of a genomic test dictates specific therapies. Major challenges, however, still lie ahead until genomic medicine will find its place in routine clinical practice. In this chapter, important facts of the principles in genomic medicine are summarized, providing insight into ways how genetic information of an individual can be used to improve drug safety and efficacy and further can help to select optimal drugs and streamline the process of drug discovery and development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921

    Article  CAS  PubMed  Google Scholar 

  2. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG et al (2001) The sequence of the human genome. Science 291(5507):1304–1351

    Article  CAS  PubMed  Google Scholar 

  3. Kim MS, Pinto SM, Getnet D, Nirujogi RS, Manda SS, Chaerkady R et al (2014) A draft map of the human proteome. Nature 509(7502):575–581. doi:10.1038/nature13302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA et al (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449(7164):851–861

    Article  CAS  PubMed  Google Scholar 

  5. Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, Walenz BP et al (2007) The diploid genome sequence of an individual human. PLoS Biol 5(10):e254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Wang J, Wang W, Li R, Li Y, Tian G, Goodman L et al (2008) The diploid genome sequence of an Asian individual. Nature 456(7218):60–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A et al (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature 452(7189):872–876

    Article  CAS  PubMed  Google Scholar 

  8. Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y et al (2004) Detection of large-scale variation in the human genome. Nat Genet 36(9):949–951

    Article  CAS  PubMed  Google Scholar 

  9. Metzker ML (2010) Sequencing technologies – the next generation. Nat Rev Genet 11(1):31–46. doi:10.1038/nrg2626

    Article  CAS  PubMed  Google Scholar 

  10. Collins FS, Varmus H (2015) A new initiative on precision medicine. N Engl J Med 372(9):793–795. doi:10.1056/NEJMp1500523

    Article  CAS  PubMed  Google Scholar 

  11. Altshuler DM, Gibbs RA, Peltonen L, Altshuler DM, Gibbs RA, Peltonen L et al (2010) Integrating common and rare genetic variation in diverse human populations. Nature 467(7311):52–58. doi:10.1038/nature09298

    Article  CAS  PubMed  Google Scholar 

  12. Alving AS, Carson PE, Flanagan CL, Ickes CE (1956) Enzymatic deficiency in primaquine-sensitive erythrocytes. Science 124(3220):484–485

    CAS  PubMed  Google Scholar 

  13. Meyer UA (2004) Pharmacogenetics – five decades of therapeutic lessons from genetic diversity. Nat Rev Genet 5(9):669–676

    Article  CAS  PubMed  Google Scholar 

  14. Roses AD (2004) Pharmacogenetics and drug development: the path to safer and more effective drugs. Nat Rev Genet 5(9):645–656

    Article  CAS  PubMed  Google Scholar 

  15. Roses AD (2008) Pharmacogenetics in drug discovery and development: a translational perspective. Nat Rev Drug Discov 7(10):807–817

    Article  CAS  PubMed  Google Scholar 

  16. Weinshilboum R (2003) Inheritance and drug response. N Engl J Med 348(6):529–537

    Article  PubMed  Google Scholar 

  17. Weinshilboum RM, Wang L (2006) Pharmacogenetics and pharmacogenomics: development, science, and translation. Annu Rev Genomics Hum Genet 7:223–245

    Article  CAS  PubMed  Google Scholar 

  18. Eichelbaum M, Ingelman-Sundberg M, Evans WE (2006) Pharmacogenomics and individualized drug therapy. Annu Rev Med 57:119–137

    Article  CAS  PubMed  Google Scholar 

  19. Kaplun A, Hogan JD, Schacherer F, Peter AP, Krishna S, Braun BR et al (2015) PGMD: a comprehensive manually curated pharmacogenomic database. Pharmacogenomics J. doi:10.1038/tpj.2015.32

    PubMed  Google Scholar 

  20. Ozsolak F, Milos PM (2011) RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12(2):87–98. doi:10.1038/nrg2934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63. doi:10.1038/nrg2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ginsburg GS, Willard HF (2009) Genomic and personalized medicine: foundations and applications. Transl Res 154(6):277–287

    Article  PubMed  Google Scholar 

  23. Hauschild A, Grob JJ, Demidov LV, Jouary T, Gutzmer R, Millward M et al (2012) Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 380(9839):358–365

    Article  CAS  PubMed  Google Scholar 

  24. Ingelman-Sundberg M (2001) Pharmacogenetics: an opportunity for a safer and more efficient pharmacotherapy. J Intern Med 250(3):186–200

    Article  CAS  PubMed  Google Scholar 

  25. Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C (2007) Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther 116(3):496–526

    Article  CAS  PubMed  Google Scholar 

  26. Gonzalez FJ, Skoda RC, Kimura S, Umeno M, Zanger UM, Nebert DW et al (1988) Characterization of the common genetic defect in humans deficient in debrisoquine metabolism. Nature 331(6155):442–446

    Article  CAS  PubMed  Google Scholar 

  27. Tanigawara Y, Aoyama N, Kita T, Shirakawa K, Komada F, Kasuga M et al (1999) CYP2C19 genotype-related efficacy of omeprazole for the treatment of infection caused by Helicobacter pylori. Clin Pharmacol Ther 66(5):528–534

    Article  CAS  PubMed  Google Scholar 

  28. Gasche Y, Daali Y, Fathi M, Chiappe A, Cottini S, Dayer P et al (2004) Codeine intoxication associated with ultrarapid CYP2D6 metabolism. N Engl J Med 351(27):2827–2831

    Article  CAS  PubMed  Google Scholar 

  29. Gomez A, Ingelman-Sundberg M (2009) Pharmacoepigenetics: its role in interindividual differences in drug response. Clin Pharmacol Ther 85(4):426–430

    Article  CAS  PubMed  Google Scholar 

  30. Hoffmeyer S, Burk O, von Richter O, Arnold HP, Brockmoller J, Johne A et al (2000) Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A 97(7):3473–3478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Siddiqui A, Kerb R, Weale ME, Brinkmann U, Smith A, Goldstein DB et al (2003) Association of multidrug resistance in epilepsy with a polymorphism in the drug-transporter gene ABCB1. N Engl J Med 348(15):1442–1448

    Article  CAS  PubMed  Google Scholar 

  32. Schmidt WM, Kalipciyan M, Dornstauder E, Rizovski B, Steger GG, Sedivy R et al (2004) Dissecting progressive stages of 5-fluorouracil resistance in vitro using RNA expression profiling. Int J Cancer 112(2):200–212

    Article  CAS  PubMed  Google Scholar 

  33. Mougey EB, Feng H, Castro M, Irvin CG, Lima JJ (2009) Absorption of montelukast is transporter mediated: a common variant of OATP2B1 is associated with reduced plasma concentrations and poor response. Pharmacogenet Genomics 19(2):129–138. doi:10.1097/FPC.0b013e32831bd98c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee W, Glaeser H, Smith LH, Roberts RL, Moeckel GW, Gervasini G et al (2005) Polymorphisms in human organic anion-transporting polypeptide 1A2 (OATP1A2): implications for altered drug disposition and central nervous system drug entry. J Biol Chem 280(10):9610–9617. doi:10.1074/jbc.M411092200

    Article  CAS  PubMed  Google Scholar 

  35. Voora D, Shah SH, Spasojevic I, Ali S, Reed CR, Salisbury BA et al (2009) The SLCO1B1*5 genetic variant is associated with statin-induced side effects. J Am Coll Cardiol 54(17):1609–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Niemi M (2010) Transporter pharmacogenetics and statin toxicity. Clin Pharmacol Ther 87(1):130–133

    Article  CAS  PubMed  Google Scholar 

  37. Morimoto K, Oishi T, Ueda S, Ueda M, Hosokawa M, Chiba K (2004) A novel variant allele of OATP-C (SLCO1B1) found in a Japanese patient with pravastatin-induced myopathy. Drug Metab Pharmacokinet 19(6):453–455

    Article  CAS  PubMed  Google Scholar 

  38. Couvert P, Giral P, Dejager S, Gu J, Huby T, Chapman MJ et al (2008) Association between a frequent allele of the gene encoding OATP1B1 and enhanced LDL-lowering response to fluvastatin therapy. Pharmacogenomics 9(9):1217–1227. doi:10.2217/14622416.9.9.1217

    Article  CAS  PubMed  Google Scholar 

  39. Trevino LR, Shimasaki N, Yang W, Panetta JC, Cheng C, Pei D et al (2009) Germline genetic variation in an organic anion transporter polypeptide associated with methotrexate pharmacokinetics and clinical effects. J Clin Oncol 27(35):5972–5978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ramsey LB, Bruun GH, Yang W, Trevino LR, Vattathil S, Scheet P et al (2012) Rare versus common variants in pharmacogenetics: SLCO1B1 variation and methotrexate disposition. Genome Res 22(1):1–8. doi:10.1101/gr.129668.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kirchheiner J, Brockmoller J (2005) Clinical consequences of cytochrome P450 2C9 polymorphisms. Clin Pharmacol Ther 77(1):1–16

    Article  CAS  PubMed  Google Scholar 

  42. Aithal GP, Day CP, Kesteven PJ, Daly AK (1999) Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 353(9154):717–719

    Article  CAS  PubMed  Google Scholar 

  43. Jonas DE, McLeod HL (2009) Genetic and clinical factors relating to warfarin dosing. Trends Pharmacol Sci 30(7):375–386

    Article  CAS  PubMed  Google Scholar 

  44. Caldwell MD, Awad T, Johnson JA, Gage BF, Falkowski M, Gardina P et al (2008) CYP4F2 genetic variant alters required warfarin dose. Blood 111(8):4106–4112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dumaual C, Miao X, Daly TM, Bruckner C, Njau R, Fu DJ et al (2007) Comprehensive assessment of metabolic enzyme and transporter genes using the Affymetrix Targeted Genotyping System. Pharmacogenomics 8(3):293–305

    Article  CAS  PubMed  Google Scholar 

  46. Tabernero J, Lenz HJ, Siena S, Sobrero A, Falcone A, Ychou M et al (2015) Analysis of circulating DNA and protein biomarkers to predict the clinical activity of regorafenib and assess prognosis in patients with metastatic colorectal cancer: a retrospective, exploratory analysis of the CORRECT trial. Lancet Oncol 16(8):937–948

    Article  CAS  PubMed  Google Scholar 

  47. Thakur BK, Zhang H, Becker A, Matei I, Huang Y, Costa-Silva B et al (2014) Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res 24(6):766–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ingelman-Sundberg M (2008) Pharmacogenomic biomarkers for prediction of severe adverse drug reactions. N Engl J Med 358(6):637–639

    Article  CAS  PubMed  Google Scholar 

  49. O’Kane DJ, Weinshilboum RM, Moyer TP (2003) Pharmacogenomics and reducing the frequency of adverse drug events. Pharmacogenomics 4(1):1–4

    Article  PubMed  Google Scholar 

  50. Nebert DW, Zhang G, Vesell ES (2008) From human genetics and genomics to pharmacogenetics and pharmacogenomics: past lessons, future directions. Drug Metab Rev 40(2):187–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lazarou J, Pomeranz BH, Corey PN (1998) Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 279(15):1200–1205

    Article  CAS  PubMed  Google Scholar 

  52. Maitland ML, Vasisht K, Ratain MJ (2006) TPMT, UGT1A1 and DPYD: genotyping to ensure safer cancer therapy? Trends Pharmacol Sci 27(8):432–437

    Article  CAS  PubMed  Google Scholar 

  53. Evans WE, Hon YY, Bomgaars L, Coutre S, Holdsworth M, Janco R et al (2001) Preponderance of thiopurine S-methyltransferase deficiency and heterozygosity among patients intolerant to mercaptopurine or azathioprine. J Clin Oncol 19(8):2293–2301

    CAS  PubMed  Google Scholar 

  54. Iyer L, Das S, Janisch L, Wen M, Ramirez J, Karrison T et al (2002) UGT1A1*28 polymorphism as a determinant of irinotecan disposition and toxicity. Pharmacogenomics J 2(1):43–47

    Article  CAS  PubMed  Google Scholar 

  55. Innocenti F, Undevia SD, Iyer L, Chen PX, Das S, Kocherginsky M et al (2004) Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J Clin Oncol 22(8):1382–1388

    Article  CAS  PubMed  Google Scholar 

  56. Levesque E, Belanger AS, Harvey M, Couture F, Jonker D, Innocenti F et al (2013) Refining the UGT1A haplotype associated with irinotecan-induced hematological toxicity in metastatic colorectal cancer patients treated with 5-fluorouracil/irinotecan-based regimens. J Pharmacol Exp Ther 345(1):95–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Innocenti F, Schilsky RL, Ramirez J, Janisch L, Undevia S, House LK et al (2014) Dose-finding and pharmacokinetic study to optimize the dosing of irinotecan according to the UGT1A1 genotype of patients with cancer. J Clin Oncol 32(22):2328–2334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lee A, Ezzeldin H, Fourie J, Diasio R (2004) Dihydropyrimidine dehydrogenase deficiency: impact of pharmacogenetics on 5-fluorouracil therapy. Clin Adv Hematol Oncol 2(8):527–532

    PubMed  Google Scholar 

  59. van Kuilenburg AB, Meijer J, Mul AN, Meinsma R, Schmid V, Dobritzsch D et al (2010) Intragenic deletions and a deep intronic mutation affecting pre-mRNA splicing in the dihydropyrimidine dehydrogenase gene as novel mechanisms causing 5-fluorouracil toxicity. Hum Genet 128(5):529–538

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Nelson MR, Tipney H, Painter JL, Shen J, Nicoletti P, Shen Y et al (2015) The support of human genetic evidence for approved drug indications. Nat Genet. doi:10.1038/ng.3314

    Google Scholar 

  61. Liljedahl U, Kahan T, Malmqvist K, Melhus H, Syvanen AC, Lind L et al (2004) Single nucleotide polymorphisms predict the change in left ventricular mass in response to antihypertensive treatment. J Hypertens 22(12):2321–2328

    Article  CAS  PubMed  Google Scholar 

  62. Liljedahl U, Lind L, Kurland L, Berglund L, Kahan T, Syvanen AC (2004) Single nucleotide polymorphisms in the apolipoprotein B and low density lipoprotein receptor genes affect response to antihypertensive treatment. BMC Cardiovasc Disord 4(1):16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Chasman DI, Posada D, Subrahmanyan L, Cook NR, Stanton VP Jr, Ridker PM (2004) Pharmacogenetic study of statin therapy and cholesterol reduction. jama 291(23):2821–2827

    Article  CAS  PubMed  Google Scholar 

  64. Donnelly LA, Doney AS, Dannfald J, Whitley AL, Lang CC, Morris AD et al (2008) A paucimorphic variant in the HMG-CoA reductase gene is associated with lipid-lowering response to statin treatment in diabetes: a GoDARTS study. Pharmacogenet Genomics 18(12):1021–1026

    Article  CAS  PubMed  Google Scholar 

  65. Rudez G, Bouman HJ, van Werkum JW, Leebeek FW, Kruit A, Ruven HJ et al (2009) Common variation in the platelet receptor P2RY12 gene is associated with residual on-clopidogrel platelet reactivity in patients undergoing elective percutaneous coronary interventions. Circ Cardiovasc Genet 2(5):515–521

    Article  CAS  PubMed  Google Scholar 

  66. Trusheim MR, Berndt ER, Douglas FL (2007) Stratified medicine: strategic and economic implications of combining drugs and clinical biomarkers. Nat Rev Drug Discov 6(4):287–293

    Article  CAS  PubMed  Google Scholar 

  67. Lesko LJ, Woodcock J (2004) Translation of pharmacogenomics and pharmacogenetics: a regulatory perspective. Nat Rev Drug Discov 3(9):763–769

    Article  CAS  PubMed  Google Scholar 

  68. Frueh FW, Salerno RA, Lesko LJ, Hockett RD (2009) 4th US FDA-Drug Information Association pharmacogenomics workshop, held 10–12 December, 2007. Pharmacogenomics 10(1):111–115

    Article  PubMed  Google Scholar 

  69. Hudis CA (2007) Trastuzumab--mechanism of action and use in clinical practice. N Engl J Med 357(1):39–51

    Article  CAS  PubMed  Google Scholar 

  70. Sordella R, Bell DW, Haber DA, Settleman J (2004) Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science 305(5687):1163–1167

    Article  CAS  PubMed  Google Scholar 

  71. Kerem E, Hirawat S, Armoni S, Yaakov Y, Shoseyov D, Cohen M et al (2008) Effectiveness of PTC124 treatment of cystic fibrosis caused by nonsense mutations: a prospective phase II trial. Lancet 372(9640):719–727

    Article  CAS  PubMed  Google Scholar 

  72. van Deutekom JC, Janson AA, Ginjaar IB, Frankhuizen WS, Aartsma-Rus A, Bremmer-Bout M et al (2007) Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med 357(26):2677–2686

    Article  PubMed  Google Scholar 

  73. Kinali M, Arechavala-Gomeza V, Feng L, Cirak S, Hunt D, Adkin C et al (2009) Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. Lancet Neurol 8(10):918–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nelson SF, Crosbie RH, Miceli MC, Spencer MJ (2009) Emerging genetic therapies to treat Duchenne muscular dystrophy. Curr Opin Neurol 22(5):532–538

    Article  PubMed  PubMed Central  Google Scholar 

  75. Hoffman EP (2007) Skipping toward personalized molecular medicine. N Engl J Med 357(26):2719–2722

    Article  CAS  PubMed  Google Scholar 

  76. Haas M, Vlcek V, Balabanov P, Salmonson T, Bakchine S, Markey G et al (2015) European Medicines Agency review of ataluren for the treatment of ambulant patients aged 5 years and older with Duchenne muscular dystrophy resulting from a nonsense mutation in the dystrophin gene. Neuromuscular Disorders 25(1):5–13. doi:10.1016/j.nmd.2014.11.011

    Article  PubMed  Google Scholar 

  77. Ryan NJ (2014) Ataluren: first global approval. Drugs 74(14):1709–1714. doi:10.1007/s40265-014-0287-4

    Article  CAS  PubMed  Google Scholar 

  78. Bushby K, Finkel R, Wong B, Barohn R, Campbell C, Comi GP et al (2014) Ataluren treatment of patients with nonsense mutation dystrophinopathy. Muscle Nerve 50(4):477–487. doi:10.1002/mus.24332

    Article  CAS  PubMed  Google Scholar 

  79. Dave SS, Fu K, Wright GW, Lam LT, Kluin P, Boerma EJ et al (2006) Molecular diagnosis of Burkitt’s lymphoma. N Engl J Med 354(23):2431–2442

    Article  CAS  PubMed  Google Scholar 

  80. Potti A, Dressman HK, Bild A, Riedel RF, Chan G, Sayer R et al (2006) Genomic signatures to guide the use of chemotherapeutics. Nat Med 12(11):1294–1300

    Article  CAS  PubMed  Google Scholar 

  81. van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347(25):1999–2009

    Article  PubMed  Google Scholar 

  82. van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536

    Article  Google Scholar 

  83. Bueno-de-Mesquita JM, van Harten WH, Retel VP, van’t Veer LJ, van Dam FS, Karsenberg K et al (2007) Use of 70-gene signature to predict prognosis of patients with node-negative breast cancer: a prospective community-based feasibility study (RASTER). Lancet Oncol 8(12):1079–1087

    Article  CAS  PubMed  Google Scholar 

  84. Desmedt C, Ruiz-Garcia E, Andre F (2008) Gene expression predictors in breast cancer: current status, limitations and perspectives. Eur J Cancer 44(18):2714–2720

    Article  CAS  PubMed  Google Scholar 

  85. Mamounas EP, Tang G, Fisher B, Paik S, Shak S, Costantino JP et al (2010) Association Between the 21-Gene Recurrence Score Assay and Risk of Locoregional Recurrence in Node-Negative, Estrogen Receptor-Positive Breast Cancer: Results From NSABP B-14 and NSABP B-20. J Clin Oncol 28(10):1677–1683

    Article  PubMed  PubMed Central  Google Scholar 

  86. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351(27):2817–2826

    Article  CAS  PubMed  Google Scholar 

  87. Potti A, Mukherjee S, Petersen R, Dressman HK, Bild A, Koontz J et al (2006) A genomic strategy to refine prognosis in early-stage non-small-cell lung cancer. N Engl J Med 355(6):570–580

    Article  CAS  PubMed  Google Scholar 

  88. Holleman A, den Boer ML, de Menezes RX, Cheok MH, Cheng C, Kazemier KM et al (2006) The expression of 70 apoptosis genes in relation to lineage, genetic subtype, cellular drug resistance, and outcome in childhood acute lymphoblastic leukemia. Blood 107(2):769–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Holleman A, Cheok MH, den Boer ML, Yang W, Veerman AJ, Kazemier KM et al (2004) Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment. N Engl J Med 351(6):533–542

    Article  CAS  PubMed  Google Scholar 

  90. Mishra PJ, Bertino JR (2009) MicroRNA polymorphisms: the future of pharmacogenomics, molecular epidemiology and individualized medicine. Pharmacogenomics 10(3):399–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Schmidt WM, Spiel AO, Jilma B, Wolzt M, Muller M (2008) In-vivo effects of simvastatin and rosuvastatin on global gene expression in peripheral blood leucocytes in a human inflammation model. Pharmacogenet Genomics 18(2):109–120

    Article  CAS  PubMed  Google Scholar 

  92. Schmidt WM, Spiel AO, Jilma B, Wolzt M, Muller M (2009) In vivo profile of the human leukocyte microRNA response to endotoxemia. Biochem Biophys Res Commun 380(3):437–441

    Article  CAS  PubMed  Google Scholar 

  93. Vasilescu C, Rossi S, Shimizu M, Tudor S, Veronese A, Ferracin M et al (2009) MicroRNA fingerprints identify miR-150 as a plasma prognostic marker in patients with sepsis. PLoS One 4(10):e7405

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Mardis ER, Wilson RK (2009) Cancer genome sequencing: a review. Hum Mol Genet 18(R2):R163–R168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nakagawa H, Wardell CP, Furuta M, Taniguchi H, Fujimoto A (2015) Cancer whole-genome sequencing: present and future. Oncogene. doi:10.1038/onc.2015.90

    PubMed Central  Google Scholar 

  96. Gagan J, Van Allen EM (2015) Next-generation sequencing to guide cancer therapy. Genome Med 7(1):80. doi:10.1186/s13073-015-0203-x

    Article  PubMed  PubMed Central  Google Scholar 

  97. Nebert DW, Vesell ES (2006) Can personalized drug therapy be achieved? A closer look at pharmaco-metabonomics. Trends Pharmacol Sci 27(11):580–586

    Article  CAS  PubMed  Google Scholar 

  98. Orth AP, Batalov S, Perrone M, Chanda SK (2004) The promise of genomics to identify novel therapeutic targets. Expert Opin Ther Targets 8(6):587–596

    Article  CAS  PubMed  Google Scholar 

  99. Hopkins AL, Groom CR (2002) The druggable genome. Nat Rev Drug Discov 1(9):727–730

    Article  CAS  PubMed  Google Scholar 

  100. Plewczynski D, Rychlewski L (2009) Meta-basic estimates the size of druggable human genome. J Mol Model 15(6):695–699

    Article  PubMed  CAS  Google Scholar 

  101. Russ AP, Lampel S (2005) The druggable genome: an update. Drug Discov Today 10(23–24):1607–1610

    Article  PubMed  Google Scholar 

  102. Yang L, Chen J, He L (2009) Harvesting candidate genes responsible for serious adverse drug reactions from a chemical-protein interactome. PLoS Comput Biol 5(7):e1000441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Von Hoff DD, Stephenson JJ Jr, Rosen P, Loesch DM, Borad MJ, Anthony S et al (2010) Pilot study using molecular profiling of patients’ tumors to find potential targets and select treatments for their refractory cancers. J Clin Oncol 28(33):4877–4883

    Article  CAS  Google Scholar 

  104. Nebert DW, Vesell ES (2004) Advances in pharmacogenomics and individualized drug therapy: exciting challenges that lie ahead. Eur J Pharmacol 500(1–3):267–280

    Article  CAS  PubMed  Google Scholar 

  105. Phillips E, Mallal S (2009) Successful translation of pharmacogenetics into the clinic: the abacavir example. Mol Diagn Ther 13(1):1–9

    Article  PubMed  Google Scholar 

  106. Hughes AR, Brothers CH, Mosteller M, Spreen WR, Burns DK (2009) Genetic association studies to detect adverse drug reactions: abacavir hypersensitivity as an example. Pharmacogenomics 10(2):225–233

    Article  CAS  PubMed  Google Scholar 

  107. Hughes AR, Spreen WR, Mosteller M, Warren LL, Lai EH, Brothers CH et al (2008) Pharmacogenetics of hypersensitivity to abacavir: from PGx hypothesis to confirmation to clinical utility. Pharmacogenomics J 8(6):365–374

    Article  CAS  PubMed  Google Scholar 

  108. Hetherington S, Hughes AR, Mosteller M, Shortino D, Baker KL, Spreen W et al (2002) Genetic variations in HLA-B region and hypersensitivity reactions to abacavir. Lancet 359(9312):1121–1122

    Article  CAS  PubMed  Google Scholar 

  109. Mallal S, Nolan D, Witt C, Masel G, Martin AM, Moore C et al (2002) Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 359(9308):727–732

    Article  CAS  PubMed  Google Scholar 

  110. Chessman D, Kostenko L, Lethborg T, Purcell AW, Williamson NA, Chen Z et al (2008) Human leukocyte antigen class I-restricted activation of CD8+ T cells provides the immunogenetic basis of a systemic drug hypersensitivity. Immunity 28(6):822–832

    Article  CAS  PubMed  Google Scholar 

  111. Mallal S, Phillips E, Carosi G, Molina JM, Workman C, Tomazic J et al (2008) HLA-B*5701 screening for hypersensitivity to abacavir. N Engl J Med 358(6):568–579

    Article  PubMed  Google Scholar 

  112. FDA (2008) FDA notifications. Abacavir package insert changes approved. Hypersensitivity, other issues addressed. AIDS Alert 23(9):102–104

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang M. Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schmidt, W.M., Mader, R.M. (2016). Current Concepts of Pharmacogenetics, Pharmacogenomics, and the “Druggable” Genome. In: Müller, M. (eds) Clinical Pharmacology: Current Topics and Case Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-27347-1_12

Download citation

Publish with us

Policies and ethics