Skip to main content

Arteriovenous Malformations: How We Changed Our Practice

  • Chapter
  • First Online:
Controversies in Vascular Neurosurgery

Abstract

Brain arteriovenous malformation (AVM) is a cluster of direct connections of arteries to draining veins without an intervening capillary bed [4]. The three main components of an AVM are one or more feeding arteries, the nidus as the site of the arteriovenous shunt, and the draining venous structures. Arteriovenous malformations are high-flow, low-resistant shunts due to a significant pressure difference between the arterial and venous side. The pressure gradient and resultant high flow trigger remodeling of both arteries and draining veins. Arteries may be dilated and thin walled due to degeneration of the media and elastic lamina or thickened from endothelial proliferation, hypertrophy of the media, and changes in the basal lamina. Remodeling of the venous system is referred to as arterialization and includes thickening of the wall due to cellular proliferation without an organized elastic lamina [4, 10]. The draining veins commonly coalesce and form a major draining vein that eventually drains into a dural venous sinus. The pathogenesis of the AVM has not been fully elucidated. The predominant theory is that AVMs are congenital in nature and result from incomplete or abnormal resolution of a primitive vascular plexus that occurs during early embryogenesis [2]. One explanation for why they are rarely detected in utero or in infants is that they first appear in utero but then continue to grow after birth. There is also growing evidences for postnatal de novo formation of these lesions [7, 17, 21]. Recent studies have identified some of the factors that may be involved in the formation of AVMs. One of them is endothelin-1, found throughout the normal cerebral vasculature, and a potent vasoconstrictor that plays a role in vascular cell growth. Local repression of endothelin-1 within the AVM has been implicated in the pathophysiology underlying AVMs [23]. Endothelial cell-specific tyrosine kinases that are normally found in developing embryonic blood vessels and vascular endothelial growth factor have been shown to be increased in association with AVMs [12].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Shahi R, Bhattacharya JJ, Currie DG, Papanastassiou V, Ritchie V, Roberts RC, et al. Scottish Intracranial Vascular Malformation Study Collaborators: prospective, population-based detection of intracranial vascular malformations in adults: the Scottish Intracranial Vascular Malformation Study (SIVMS). Stroke J Cereb Circ. 2003;34:1163–9.

    Article  Google Scholar 

  2. Amin-Hanjani S. ARUBA results are not applicable to all patients with arteriovenous malformation. Stroke J Cereb Circ. 2014;45:1539–40.

    Article  Google Scholar 

  3. Castel JP, Kantor G. Postoperative morbidity and mortality after microsurgical exclusion of cerebral arteriovenous malformations. Current data and analysis of recent literature. Neurochirurgie. 2001;47:369–83.

    CAS  PubMed  Google Scholar 

  4. Challa VR, Moody DM, Brown WR. Vascular malformations of the central nervous system. J Neuropathol Exp Neurol. 1995;54:609–21.

    Article  CAS  PubMed  Google Scholar 

  5. Choi BS, Park JW, Kim JL, Kim SY, Park YS, Kwon H-J, et al. Treatment strategy based on multimodal management outcome of Cavernous Sinus Dural Arteriovenous Fistula (CSDAVF). Neurointervention. 2011;6:6–12.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Da Costa L, Wallace MC, Ter Brugge KG, O’Kelly C, Willinsky RA, Tymianski M. The natural history and predictive features of hemorrhage from brain arteriovenous malformations. Stroke J Cereb Circ. 2009;40:100–5.

    Article  Google Scholar 

  7. Fujimura M, Kimura N, Ezura M, Niizuma K, Uenohara H, Tominaga T. Development of a de novo arteriovenous malformation after bilateral revascularization surgery in a child with moyamoya disease. J Neurosurg Pediatr. 2014;13:647–9.

    Article  PubMed  Google Scholar 

  8. Gross BA, Du R. Natural history of cerebral arteriovenous malformations: a meta-analysis. J Neurosurg. 2013;118:437–43.

    Article  PubMed  Google Scholar 

  9. Halim AX, Johnston SC, Singh V, McCulloch CE, Bennett JP, Achrol AS, et al. Longitudinal risk of intracranial hemorrhage in patients with arteriovenous malformation of the brain within a defined population. Stroke J Cereb Circ. 2004;35:1697–702.

    Article  Google Scholar 

  10. Harrigan M, Deveikis J. Arteriovenous malformations. In: Handbook of cerebrovascular disease and neurointerventional technique. New York: Humana Press, Springer; 2009. p. 511–27.

    Google Scholar 

  11. Hartmann A, Mast H, Mohr JP, Pile-Spellman J, Connolly ES, Sciacca RR, et al. Determinants of staged endovascular and surgical treatment outcome of brain arteriovenous malformations. Stroke J Cereb Circ. 2005;36:2431–5.

    Article  Google Scholar 

  12. Hatva E, Jääskeläinen J, Hirvonen H, Alitalo K, Haltia M. Tie endothelial cell-specific receptor tyrosine kinase is upregulated in the vasculature of arteriovenous malformations. J Neuropathol Exp Neurol. 1996;55:1124–33.

    Article  CAS  PubMed  Google Scholar 

  13. Hernesniemi JA, Dashti R, Juvela S, Väärt K, Niemelä M, Laakso A. Natural history of brain arteriovenous malformations: a long-term follow-up study of risk of hemorrhage in 238 patients. Neurosurgery. 2008;63:823–9; discussion 829–831.

    Article  PubMed  Google Scholar 

  14. Jafar JJ, Davis AJ, Berenstein A, Choi IS, Kupersmith MJ. The effect of embolization with N-butyl cyanoacrylate prior to surgical resection of cerebral arteriovenous malformations. J Neurosurg. 1993;78:60–9.

    Article  CAS  PubMed  Google Scholar 

  15. Karlsson B, Jokura H, Yamamoto M, Söderman M, Lax I. Is repeated radiosurgery an alternative to staged radiosurgery for very large brain arteriovenous malformations? J Neurosurg. 2007;107:740–4.

    Article  PubMed  Google Scholar 

  16. LeBlanc R, Ethier R, Little JR. Computerized tomography findings in arteriovenous malformations of the brain. J Neurosurg. 1979;51:765–72.

    Article  CAS  PubMed  Google Scholar 

  17. Miller BA, Bass DI, Chern JJ. Development of a de novo arteriovenous malformation after severe traumatic brain injury. J Neurosurg Pediatr. 2014;14:418–20.

    Article  PubMed  Google Scholar 

  18. Mohr JP, Parides MK, Stapf C, Moquete E, Moy CS, Overbey JR, et al. International ARUBA investigators: medical management with or without interventional therapy for unruptured brain arteriovenous malformations (ARUBA): a multicentre, non-blinded, randomised trial. Lancet. 2014;383:614–21.

    Article  CAS  PubMed  Google Scholar 

  19. Nerva JD, Mantovani A, Barber J, Kim LJ, Rockhill JK, Hallam DK, et al. Treatment outcomes of unruptured arteriovenous malformations with a subgroup analysis of ARUBA (A Randomized Trial of Unruptured Brain Arteriovenous Malformations)-eligible patients. Neurosurgery. 2015;76:563–70; discussion570; quiz 570.

    Article  PubMed  Google Scholar 

  20. Ondra SL, Troupp H, George ED, Schwab K. The natural history of symptomatic arteriovenous malformations of the brain: a 24-year follow-up assessment. J Neurosurg. 1990;73:387–91.

    Article  CAS  PubMed  Google Scholar 

  21. O’Shaughnessy BA, Getch CC, Bendok BR, Batjer HH. Microsurgical resection of infratentorial arteriovenous malformations. Neurosurg Focus. 2005;19:E5.

    PubMed  Google Scholar 

  22. Perret G, Nishioka H. Report on the cooperative study of intracranial aneurysms and subarachnoid hemorrhage. Section VI. Arteriovenous malformations. An analysis of 545 cases of cranio-cerebral arteriovenous malformations and fistulae reported to the cooperative study. J Neurosurg. 1966;25:467–90.

    Article  CAS  PubMed  Google Scholar 

  23. Rhoten RL, Comair YG, Shedid D, Chyatte D, Simonson MS. Specific repression of the preproendothelin-1 gene in intracranial arteriovenous malformations. J Neurosurg. 1997;86:101–8.

    Article  CAS  PubMed  Google Scholar 

  24. Rutledge WC, Abla AA, Nelson J, Halbach VV, Kim H, Lawton MT. Treatment and outcomes of ARUBA-eligible patients with unruptured brain arteriovenous malformations at a single institution. Neurosurg Focus. 2014;37:E8.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shankar JJS, Menezes RJ, Pohlmann-Eden B, Wallace C, terBrugge K, Krings T. Angioarchitecture of brain AVM determines the presentation with seizures: proposed scoring system. AJNR Am J Neuroradiol. 2013;34:1028–34.

    Article  CAS  PubMed  Google Scholar 

  26. Spetzler RF, Martin NA. A proposed grading system for arteriovenous malformations. J Neurosurg. 1986;65:476–83.

    Article  CAS  PubMed  Google Scholar 

  27. Stapf C, Mast H, Sciacca RR, Berenstein A, Nelson PK, Gobin YP, et al. New York Islands AVM Study Collaborators: the New York Islands AVM Study: design, study progress, and initial results. Stroke J Cereb Circ. 2003;34:e29–33.

    Article  CAS  Google Scholar 

  28. Stapf C, Mast H, Sciacca RR, Choi JH, Khaw AV, Connolly ES, et al. Predictors of hemorrhage in patients with untreated brain arteriovenous malformation. Neurology. 2006;66:1350–5.

    Article  CAS  PubMed  Google Scholar 

  29. Van Beijnum J, Lovelock CE, Cordonnier C, Rothwell PM, Klijn CJM, Al-Shahi Salman R. SIVMS Steering Committee and the Oxford Vascular Study: outcome after spontaneous and arteriovenous malformation-related intracerebral haemorrhage: population-based studies. Brain J Neurol. 2009;132:537–43.

    Article  Google Scholar 

  30. Van Loveren H. Current treatments of AVM’s (66th Southern Neurosurgical Society Annual Meeting). Naples, FL, 2015.

    Google Scholar 

  31. Viñuela F, Dion JE, Duckwiler G, Martin NA, Lylyk P, Fox A, et al. Combined endovascular embolization and surgery in the management of cerebral arteriovenous malformations: experience with 101 cases. J Neurosurg. 1991;75:856–64.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher S. Ogilvy MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Griessenauer, C.J., Dolati, P., Thomas, A., Ogilvy, C.S. (2016). Arteriovenous Malformations: How We Changed Our Practice. In: Veznedaroglu, E. (eds) Controversies in Vascular Neurosurgery. Springer, Cham. https://doi.org/10.1007/978-3-319-27315-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27315-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27313-6

  • Online ISBN: 978-3-319-27315-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics