Skip to main content

Colletotrichum gloeosporioides: Pathogen of Anthracnose Disease in Mango (Mangifera indica L.)

  • Chapter
  • First Online:
Current Trends in Plant Disease Diagnostics and Management Practices

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

The Mango is severely affected with anthracnose disease caused by Colletotrichum gloeosporioides belongs to order melanoconiales. C. gloeosporioides affects mango crop as the most threatening malady that results in huge economic losses about 30–60 % damage which sometimes increased up to 100 % in fruit produce under wet or very humid conditions. The optimum temperature for conidial germination and infection is around 25–30 °C when free moisture is available. The anthracnose pathogen is found present on the host tissues as endophyte and remain in quiescent stage but, with the onset of moist and rainy season causes serious infection. Pathogen produced lesions on leaves, fruits and panicles and with increasing penetration of pathogen to host tissue the lesions become dark and form concentric ring pattern. The blossom as well as peduncle blight is the most destructive phase of this disease, as it affects fruit set and ultimately the yield. C. gloeosporioides display a range of nutritional strategies and lifestyles, including plant associations that occupy a continuum from necrotrophy to hemibiotrophy and endophytism. During the anamorph (asexual) stage the pathogen is typically haploid and becomes diploid during transition towards teleomorph (sexual = Glomerulla) stage. With the advances in genomics and transcriptomics in future there would be more new vistas in exploration of molecular mechanism of anthracnose disease occurrence. How certain signal molecules activated and leads to changes in lifestyle of C. gloeosporioides from biotrophic to necrotrophic stage especially during fruit ripening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alahakoon PW, Brown AE, Sreenivasaprasad S (1994) Cross-infection potential of genetic groups of Colletotrichum gloeosporioides on tropical fruits. Physiol Mol Plant Pathol 44:93–103

    Article  CAS  Google Scholar 

  • Andes JO (1941) Experiments on the inheritance of the “plus” and “minus” characters in Glomerella cingulata. Bull Torrey Bot Club 68:609–614

    Article  Google Scholar 

  • Arauz LP (2000) Mango anthracnose: economic impact and current options for integrated management. Plant Dis 84:600–611

    Article  Google Scholar 

  • Aveno JL, Orden MEM (2004) Hot water treatment of mango: a study of four export corporations in the Philippines. KMITL Sci Technol J. 4:1685–2044

    Google Scholar 

  • Bose SK, Sindhan GS, Pandey BN (1973) Studies on the die back disease of mango in the Tarai region of Kumaon. Progress Hortic 5:41–53

    Google Scholar 

  • Cai L, Hyde KD, Taylor PWJ, Weir BS, Waller J, Abang MM, Zhang JZ, Yang YL, Phoulivong S, Liu ZY, Prihastuti H, Shivas RG, McKenzie EHC, Johnston PR (2009) A polyphasic approach for studying Colletotrichum. Fungal Divers 39:183–204

    Google Scholar 

  • Coates LM, Muirhead IF, Irwin JAG, Gowanlock D (1993) Initial infection processes by Colletotrichum gloeosporioides on avocado fruit. Mycol Res 97:1363–1370

    Article  Google Scholar 

  • Dinh SQ, Chongwungse J, Pongam P, Sangchote S (2003) Fruit infection by C. gloeosporioides and anthracnose resistance of some mango cultivars in Thailand. Aust Plant Pathol 32:533–538

    Article  Google Scholar 

  • Dodd JC, Bugante R, Koomen I, Jeffeies P, Jeger MJ (1991) Pre and post-harvest control of mango anthracnose in the Philippines. Plant Pathol 40:576–583

    Google Scholar 

  • Doyle VP, Oudemans PV, Rehner SA, Litt A (2013) Habitat and host indicate lineage identity in Colletotrichum gloeosporioides s.l. from wild and agricultural landscapes in North America. PLoS ONE 8:623–694

    Google Scholar 

  • Edgerton CW (1912) Plus and minus strains in an ascomycete. Science 35:151

    Google Scholar 

  • Edgerton CW (1914) Plus and minus strains in the genus Glomerella. Am J Bot 1:244–254

    Article  Google Scholar 

  • Estrada AB, Jeffries P, Dodd JC (1996) Field evaluation of a predictive model to control anthracnose disease of mango in the Philippines. Plant Pathol 45:294–301

    Article  Google Scholar 

  • Fitzell RD (1979) Colletotrichum acutatum as a cause of anthracnose of mango in New South Wales. Plant Disease Reporter 63:1067–1070.

    Google Scholar 

  • Fitzell RD, Peak CM (1984) The epidemiology of anthracnose disease of mango: inoculum sources, spore production and dispersal. Ann Appl Biol 104:53–59

    Article  Google Scholar 

  • Freeman S, Katan T, Shabi E (1998) Characterization of Colletotrichumspecies responsible for anthracnose diseases of various fruits. Plant Dis 82:596–605

    Article  Google Scholar 

  • Gantotti BV, Davis MJ (1993) Pectic zymogram analysis for characterizing genetic diversity of the mango anthracnose pathogen. Acta Hortic 341:353–359

    Article  Google Scholar 

  • Geiser DM, Jiménez-Gasco M, Kang S, Makalowska I, Veeraraghavan N (2004) FUSARIUM-ID v. 1.0: a DNA sequence database for identifying Fusarium. Eur J Plant Pathol 110:473–479

    Article  CAS  Google Scholar 

  • Gupta VK, Pandey A, Kumar P, Pandey BK, Gaur RK, Bajpai V, Sharma N, Sharma S (2010) Genetic characterization of mango anthracnose pathogen Colletotrichum gloeosporioides Penz. By random amplified polymorphic DNA analysis. Afr J Biotechnol 9:4009–4013

    CAS  Google Scholar 

  • Houbraken J, Frisvad JC, Samson RA (2011) Fleming’s penicillin producing strain is not P. chrysogenum but P. rubens. IMA Fungus 2:87–95

    Article  PubMed  PubMed Central  Google Scholar 

  • Jefferies P, Dodd JC, Jeger MJ, Plumbley RA (1990) The biology and control of Colletotrichum species on tropical fruit crops. Plant Pathol 39:343–366

    Article  Google Scholar 

  • Johnson GI, Boag TS, Cooke AW, Izard M, Panitz M, Sangchote S (1990) Interaction of postharvest diseases control treatments and gamma irradiation of mangoes. Ann Appl Biol 116:245–257

    Article  Google Scholar 

  • Kamle M, Kumar P, Gupta VK, Tiwari AK, Misra AK, Pandey BK (2013a) Identification and phylogenetic correlation among Colletotrichum gloeosporioides pathogen of anthracnose for mango. Biocat Agric Biotechnol 2(3):285–287

    Google Scholar 

  • Kamle M, Pandey BK, Kumar P, Muthukumar M (2013b) A species-specific PCR based assay for rapid detection of mango anthracnose pathogen Colletotrichum gloeosporioides Penz. and Sacc. J Plant Pathol Microbiol 4:6

    Article  Google Scholar 

  • Kumar AS, Reddy NPE, Reddy KH, Devi MC (2007) Evaluation of fungicidal resistance among Colletotrichum gloeosporioides isolates causing mango anthracnose in Agri Export Zone of Andhra Pradesh, India. Plant Pathol Bull 16:157–160

    CAS  Google Scholar 

  • Laxmi BKM, Reddy PN, Prasad RD (2011) Cross infection potential of Colletotrichum gloeosporioides Penz. isolates causing anthracnose in subtropical fruit crops. Trop Agric Res 22:183–193

    Google Scholar 

  • Lucas GB, Chilton SJP, Edgerton CW (1944) Genetics of Glomerella. I. Studies on the behavior of certain strains. Am J Bot 31:233–239

    Article  Google Scholar 

  • Martínez-Culebras PV, Querol A, Suarez-Fernandez MB, García-Lopez MD, Barrio E (2003) Phylogenetic relationships among Colletotrichum pathogens of strawberry and Design of PCR primers for their identification. J Phytopathol 151:135–143

    Article  Google Scholar 

  • Mitcham E, Yahia E (2009) Alternative treatments to hot water immersion for mango fruit report to the national mango board. http://www.mango.org/media/73313/alternatives%20to%20hot%20water%20treatment-final%20report.pdf. Accessed 8 Oct 2010

  • O’Connell RJ, Thon MR, Hacquard S, Amyotte SG, Kleemann J et al (2012) Life-style transitions in plant pathogenic Colletotrichum fungi deciphered bygenome and transcriptome analyses. Nat Genet. doi:10.1038/ng.2372

    Google Scholar 

  • O’Donnell K, Gueidan C, Sink S, Johnston PR, Crous PW et al (2009) A twolocus DNA sequence database for typing plant and human pathogens within the Fusarium oxysporum species complex. Fungal Genet Biol 46:936–948

    Article  PubMed  Google Scholar 

  • Olive LS (1951) Homothallism and heterothallism in Glomerella. Trans N Y Acad Sci 13:238–242

    Article  CAS  PubMed  Google Scholar 

  • Palo MA (1932) Sclerotium seed rot and seedling stem rot of mango. Philippines J Sci 52(3):237–261

    Google Scholar 

  • Ploetz R (1999) Anthracnose: The most important disease in much of the mango-producing world. News Lett. Plant Pathol 3:1–6

    Google Scholar 

  • Peterson RA (1986) Mango diseases. In: Proceedings of the CSIRO 1st Australian Mango Research Workshop. CSIRO, Cairns, pp 233–247

    Google Scholar 

  • Prakash O, Misra AK, Kishun R (1996) Some threatening diseases of mango and their management. In: Management of threatening plant diseases of national importance. Malhotra publishing House, New Delhi, pp 179–205

    Google Scholar 

  • Prusky D (1996) Pathogen quiescence in post-harvest diseases. Annu Rev Phytopathol 34:413–434

    Article  CAS  PubMed  Google Scholar 

  • Prusky D, Keen NT (1993) Involvement of preformed antifungal compounds in the resistance of subtropical fruits to fungal decay. Plant Dis 77:114–119

    Article  CAS  Google Scholar 

  • Prusky D, Lichter A (2007) Activation of quiescent infection by postharvest pathogens during transition from the biotrophic to necrotrophic stage. FEMS Microbiol Lett 268:1–8

    Article  CAS  PubMed  Google Scholar 

  • Samson RA, Noonim P, Meijer M, Houbraken J, Frisvad JC et al (2007) Diagnostic tools to identify black aspergilli. Stud Mycol 59:129–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sangeetha CG, Rawal RD (2009) Temperature requirements of different isolates of Colletotrichum gloeosporioides isolated from mango. Am Eurasian J Sci Res 4:20–25

    CAS  Google Scholar 

  • Sattar A, Malik SA (1939) Some studies on anthracnose of mango caused by Glomerella cingulata (Stonem.) Spauld. Sch. (Colletotrichum gloeosporioides Penz.). Indian J Agric Sci 1:511–521

    Google Scholar 

  • Seifert KA, Samson RA, deWaard JR, Houbraken J, Levesque CA (2007) Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as a test case. Proc Natl Acad Sci U S A 104:3901–3906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma G, Kumar N, Weir BS, Hyde KD, Shenoy BD (2013) The ApMat marker can resolve Colletotrichum species: a case study with Mangifera indica. Fungal Divers 61:117–138

    Article  Google Scholar 

  • Silva DN, Talhinas P, Várzea V, Cai L, Paulo OS, Batista D (2012) Application of the Apn2/MAT locus to improve the systematics of the Colletotrichum gloeosporioides complex: an example from coffee (Coffea spp.) hosts. Mycologia 104:396–409

    Article  CAS  PubMed  Google Scholar 

  • Simmonds JH (1965) A study of the species of Colletotrichum causing ripe fruit rots in Queensland. Queensland J Agric Anim Sci 22:437–459

    Google Scholar 

  • Tharanathan RN, Yashoda HM, Prabha TN (2006) Mango (Mangifera indica L.) “The King of Fruits” — an overview. Food Rev Int 22:95–123

    Article  CAS  Google Scholar 

  • Vaillancourt LJ, Hanau RM (1992) Genetic and morphological comparisonsof Glomerella (Colletotrichum) isolates from maize and from sorghum. Exp Mycol 16:219–229

    Article  Google Scholar 

  • Vaillancourt L, Wang J, Hanau R (2000) Genetic regulation of sexual compatibility in Glomerella graminicola. In: Prusky D, Freeman S, Dickman M (eds) Colletotrichum host specificity, pathology, and host-pathogen interaction. APS press, St. Paul, pp 29–44

    Google Scholar 

  • Weir B, Johnston PR, Damm U (2012) The Colletotrichum gloeosporioides species complex. Stud Mycol 73:115–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheeler HE (1954) Genetics and evolution of heterothallism in Glomerella. Phytopathology 44:342–345

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhu Kamle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kamle, M., Kumar, P. (2016). Colletotrichum gloeosporioides: Pathogen of Anthracnose Disease in Mango (Mangifera indica L.). In: Kumar, P., Gupta, V., Tiwari, A., Kamle, M. (eds) Current Trends in Plant Disease Diagnostics and Management Practices. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-27312-9_9

Download citation

Publish with us

Policies and ethics