Skip to main content

Influence of the Shear Layer Thickness on the Flow Around Unsteady Airfoils

  • Conference paper
  • First Online:
New Results in Numerical and Experimental Fluid Mechanics X

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 132))

  • 2373 Accesses

Abstract

Experiments with a pitching and plunging unsteady airfoil have been conducted in order to investigate the influence of the separating shear layer properties on the formation and detachment of leading edge vortices (LEVs). The chord length was varied from 90 to 180 mm keeping all non-dimensional parameters constant. It has been shown, that the mechanism of vortex detachment changes with chord length, manifested by a change in flow topology. One mechanism scales with chord length, the other is attributed to viscous effects in the boundary layer. For this mechanism a new scaling of the LEV circulation is introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afanasyev, Y.D.: Formation of vortex dipoles. Phys. Fluids 18, 037103 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baik, Y.S., Bernal, L.P., Granlund, K., Ol, M.V.: Unsteady force generation and vortex dynamics of pitching and plunging aerofoils. J. Fluid Mech. 709, 1–32 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Betz, A.: Wie entsteht ein Wirbel in einer wenig zhen Flssigkeit? Die Naturwissenschaften 37, 193–196 (1950)

    Google Scholar 

  4. Dabiri, J.O.: Optimal vortex formation as a unifying principle in biological propulsion. Annu. Rev. Fluid Mech. 41, 17–33 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. DeVoria, A.C., Ringuette, M.J.: Vortex formation and saturation for low-aspect-ratio rotating flat-plate fins. Exp. Fluids 52, 441–462 (2012)

    Article  Google Scholar 

  6. Didden, N.: On the formation of vortex rings: rolling-up and production of circulation. J. Appl. Math. Phys. 30, 101–115 (1979)

    Article  Google Scholar 

  7. Doligalski, T.L., Smith, C.R., Walker, J.D.: Vortex interactions with walls. Annu. Rev. Fluid Mech. 26, 573–616 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fage, A., Johansen, F.C.: XLII. The structure of vortex sheets. Lond. Edinb. Dublin Philos. Mag. J. Sci. 5, 417–441 (1928)

    Article  MATH  Google Scholar 

  9. Foss, J.F.: Surface selections and topological constraint evaluations for flow field analyses. Exp. Fluids 37, 883–898 (2004)

    Article  Google Scholar 

  10. Gerrard, J.H.: The mechanics of the formation region of vortices behind bluff bodies. J. Fluid Mech. 25, 401–413 (1966)

    Article  Google Scholar 

  11. Gharib, M., Rambod, E., Shariff, K.: A universal time scale for vortex ring formation. J. Fluid Mech. 360, 121–140 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Graftieaux, L., Michard, M., Grosjean, N.: Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows. Meas. Sci. Technol. 12, 1422–1429 (2001)

    Article  Google Scholar 

  13. Jones, A.R., Babinsky, H.: Unsteady lift generation on rotating wings at low eeynolds numbers. J. Aircr. 47, 1013–1021 (2010)

    Article  Google Scholar 

  14. Kaden, H.: Aufwicklung einer unstabilen Unstetigkeitsfläche. Ing. Arch. 2, 140–168 (1931)

    Article  MATH  Google Scholar 

  15. McCroskey, W.J.: Unsteady airfoils. Annu. Rev. Fluid Mech. 14, 285–311 (1982)

    Article  MATH  Google Scholar 

  16. Pedrizzetti, G.: Vortex formation out of two-dimensional orifices. J. Fluid Mech. 655, 198–216 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rival, D.E., Prangemeier, T., Tropea, C.: The influence of airfoil kinematics on the formation of leading-edge vortices in bio-inspired flight. Exp. Fluids 46, 823–833 (2008)

    Article  Google Scholar 

  18. Rival, D.E., Manejev, R., Tropea, C.: Measurement of parallel blade-vortex interaction at low Reynolds numbers. Exp. Fluids 49, 89–99 (2010)

    Article  Google Scholar 

  19. Rival, D.E., Kriegseis, J., Schaub, P., Widmann, A., Tropea, C.: Characteristic length scales for vortex detachment on plunging profiles with varying leading-edge geometry. Exp. Fluids 55, 1–8 (2014)

    Article  Google Scholar 

  20. Roshko, A.: On the Drag and Shedding Frequency of Two-Dimensional Bluff Bodies—Technical Note 3169. National Advisory Committee for Aeronautics (1954)

    Google Scholar 

  21. Sattari, P., Rival, D.E., Martinuzzi, R.J., Tropea, C.: Growth and separation of a start-up vortex from a two-dimensional shear layer. Phys. Fluids 24, 1–14 (2012)

    Article  Google Scholar 

  22. Schlichting, H., Gersten, K.: Boundary Layer Theory. Springer, Berlin (2001)

    MATH  Google Scholar 

  23. Tobak, M., Peak, D.J.: Topology of three-dimensional separated flows. Annu. Rev. Fluid Mech. 14, 61 (1982)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Widmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Widmann, A., Tropea, C. (2016). Influence of the Shear Layer Thickness on the Flow Around Unsteady Airfoils. In: Dillmann, A., Heller, G., Krämer, E., Wagner, C., Breitsamter, C. (eds) New Results in Numerical and Experimental Fluid Mechanics X. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 132. Springer, Cham. https://doi.org/10.1007/978-3-319-27279-5_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27279-5_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27278-8

  • Online ISBN: 978-3-319-27279-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics