Skip to main content

Continuous After-the-Fact Leakage-Resilient eCK-Secure Key Exchange

  • Conference paper
  • First Online:
Cryptography and Coding (IMACC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9496))

Included in the following conference series:

Abstract

Security models for two-party authenticated key exchange (AKE) protocols have developed over time to capture the security of AKE protocols even when the adversary learns certain secret values. Increased granularity of security can be modelled by considering partial leakage of secrets in the manner of models for leakage-resilient cryptography, designed to capture side-channel attacks. In this work, we use the strongest known partial-leakage-based security model for key exchange protocols, namely continuous after-the-fact leakage \(\mathrm {eCK}\) (\(\mathrm {CAFL\text {-}eCK}\)) model. We resolve an open problem by constructing the first concrete two-pass leakage-resilient key exchange protocol that is secure in the \(\mathrm {CAFL\text {-}eCK}\) model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Alawatugoda, J., Boyd, C., Stebila, D.: Continuous after-the-fact leakage-resilient eck-secure key exchange. IACR Cryptology ePrint Archive 2015:335 (2015)

    Google Scholar 

  3. Alawatugoda, J., Stebila, D., Boyd, C.: Modelling after-the-fact leakage for key exchange. In: ASIACCS (2014)

    Google Scholar 

  4. Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 36–54. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  6. Bernstein, D.J.: Cache-timing attacks on AES. Technical report (2005). http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

  7. Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole in the bucket: public-key cryptography resilient to continual memory leakage. IACR Cryptology ePrint Archive, Report 2010/278 (2010)

    Google Scholar 

  8. Brumley, D., Boneh, D.: Remote timing attacks are practical. In: USENIX Security Symposium, pp. 1–14 (2003)

    Google Scholar 

  9. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory 22, 644–654 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryptography in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 613–631. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Dziembowski, S., Faust, S.: Leakage-resilient cryptography from the inner-product extractor. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 702–721. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: IEEE Symposium on Foundations of Computer Science, pp. 293–302 (2008)

    Google Scholar 

  14. Faust, S., Kiltz, E., Pietrzak, K., Rothblum, G.N.: Leakage-resilient signatures. IACR Cryptology ePrint Archive, Report 2009/282 (2009)

    Google Scholar 

  15. Hutter, M., Mangard, S., Feldhofer, M.: Power and EM attacks on passive 13.56 MHz RFID devices. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 320–333. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  17. Kiltz, E., Pietrzak, K.: Leakage resilient ElGamal encryption. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 595–612. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)

    Google Scholar 

  19. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 1–16. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  20. Malkin, T., Teranishi, I., Vahlis, Y., Yung, M.: Signatures resilient to continual leakage on memory and computation. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 89–106. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  21. Messerges, T., Dabbish, E., Sloan, R.: Examining smart-card security under the threat of power analysis attacks. IEEE Trans. Comput. 51, 541–552 (2002)

    Article  MathSciNet  Google Scholar 

  22. Moriyama, D., Okamoto, T.: Leakage resilient eCK-secure key exchange protocol without random oracles. In: ASIACCS, pp. 441–447 (2011)

    Google Scholar 

  23. Yang, G., Mu, Y., Susilo, W., Wong, D.S.: Leakage resilient authenticated key exchange secure in the auxiliary input model. In: Deng, R.H., Feng, T. (eds.) ISPEC 2013. LNCS, vol. 7863, pp. 204–217. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

Download references

Acknowledgements

This research was supported in part by Australian Research Council (ARC) Discovery Project grant DP130104304.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janaka Alawatugoda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Alawatugoda, J., Stebila, D., Boyd, C. (2015). Continuous After-the-Fact Leakage-Resilient eCK-Secure Key Exchange. In: Groth, J. (eds) Cryptography and Coding. IMACC 2015. Lecture Notes in Computer Science(), vol 9496. Springer, Cham. https://doi.org/10.1007/978-3-319-27239-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27239-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27238-2

  • Online ISBN: 978-3-319-27239-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics