Skip to main content

The Role of Omega-3 Fatty Acids in Breast Cancer Prevention

  • Chapter
  • First Online:
Trends in Breast Cancer Prevention

Abstract

Preclinical and epidemiological data suggest that omega-3 fatty acids (n-3FA) protect against breast cancer, although controversy still exists in the literature. In view of the heterogeneity of human breast cancer, we believe that n-3FA should be a component of a multi-targeted approach for effective chemoprevention. Preclinical data from our laboratories indicate that n-3FA potentiates the chemopreventive effect of the antiestrogen Tamoxifen based on the complementarity of their mechanisms of antitumor action suggested by our signaling, genomic, and proteomic studies. Because of their anti-estrogenic and anti-inflammatory properties, n-3FA may be preferentially effective in preventing obesity-related breast cancer. In view of the hyperestrogenic and pro-inflammatory milieu present systematically and in the mammary glands of obese women, n-3FA may cooperate with weight loss induced by dietary energy restriction in reducing breast cancer risk in these subjects. Evidence-based combinatorial intervention trials targeting appropriately selected populations of women at risk are needed to establish the role of n-3FA in breast cancer prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Cancer Society. Cancer facts & figures. 2010. The Society: Atlanta. p. v.

    Google Scholar 

  2. Servick K. Breast cancer. Breast cancer: a world of differences. Science. 2014;343(6178):1452–3.

    Article  PubMed  Google Scholar 

  3. Russo J, Russo IH. Role of differentiation in pathogenesis and prevention of breast cancer. Endocr Relat Cancer. 1997;4:7–21.

    Article  CAS  Google Scholar 

  4. Russo I, Russo J. Role of hormones in cancer initiation and progression. J Mammary Gland Biol Neoplasia. 1998;3:49–61.

    Article  CAS  PubMed  Google Scholar 

  5. Brody JG et al. Breast cancer and environmental research. Science. 2014;344(6184):577.

    Article  CAS  PubMed  Google Scholar 

  6. Fisher B et al. Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J Natl Cancer Inst. 1998;90(18):1371–88.

    Article  CAS  PubMed  Google Scholar 

  7. Vogel VG et al. Update of the National Surgical Adjuvant Breast and Bowel Project Study of Tamoxifen and Raloxifene (STAR) P-2 Trial: Preventing breast cancer. Cancer Prev Res (Phila). 2010;3(6):696–706.

    Article  CAS  Google Scholar 

  8. Goss PE et al. Exemestane for breast-cancer prevention in postmenopausal women. N Engl J Med. 2011;364(25):2381–91.

    Article  CAS  PubMed  Google Scholar 

  9. Fagerlin A et al. Women's interest in taking tamoxifen and raloxifene for breast cancer prevention: response to a tailored decision aid. Breast Cancer Res Treat. 2011;127(3):681–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dartois L et al. Association between five lifestyle habits and cancer risk: results from the E3N cohort. Cancer Prev Res (Phila). 2014;7(5):516–25.

    Article  Google Scholar 

  11. Thomson CA et al. Nutrition and physical activity cancer prevention guidelines, cancer risk, and mortality in the women's health initiative. Cancer Prev Res (Phila). 2014;7(1):42–53.

    Article  Google Scholar 

  12. Cloud AJ et al. The impact of cancer prevention guideline adherence on overall mortality in a high-risk cohort of women from the New York site of the Breast Cancer Family Registry. Breast Cancer Res Treat. 2015;149(2):537–46.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ghadirian P et al. Breast cancer risk in relation to the joint effect of BRCA mutations and diet diversity. Breast Cancer Res Treat. 2009;117(2):417–22.

    Article  CAS  PubMed  Google Scholar 

  14. Ko KP et al. Dietary intake and breast cancer among carriers and noncarriers of BRCA mutations in the Korean Hereditary Breast Cancer Study. Am J Clin Nutr. 2013;98(6):1493–501.

    Article  CAS  PubMed  Google Scholar 

  15. Carroll KK, Braden LM. Dietary fat and mammary carcinogenesis. Nutr Cancer. 1984;6(4):254–9.

    Article  CAS  PubMed  Google Scholar 

  16. Simopoulos AP. Importance of the ratio of omega-6/omega-3 essential fatty acids: evolutionary aspects. World Rev Nutr Diet. 2003;92:1–22.

    Article  CAS  PubMed  Google Scholar 

  17. Larsson SC et al. Dietary long-chain n-3 fatty acids for the prevention of cancer: a review of potential mechanisms. Am J Clin Nutr. 2004;79(6):935–45.

    CAS  PubMed  Google Scholar 

  18. Zheng JS et al. Intake of fish and marine n-3 polyunsaturated fatty acids and risk of breast cancer: meta-analysis of data from 21 independent prospective cohort studies. BMJ. 2013;346:f3706.

    Article  PubMed  Google Scholar 

  19. Yang B et al. Ratio of n-3/n-6 PUFAs and risk of breast cancer: a meta-analysis of 274135 adult females from 11 independent prospective studies. BMC Cancer. 2014;14:105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lohner S et al. Gender differences in the long-chain polyunsaturated fatty acid status: systematic review of 51 publications. Ann Nutr Metab. 2013;62(2):98–112.

    Article  CAS  PubMed  Google Scholar 

  21. Pender-Cudlip MC et al. Delta-6-desaturase activity and arachidonic acid synthesis are increased in human breast cancer tissue. Cancer Sci. 2013;104(6):760–4.

    Article  CAS  PubMed  Google Scholar 

  22. Gerster H. Can adults adequately convert alpha-linolenic acid (18:3n-3) to eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3)? Int J Vitam Nutr Res. 1998;68(3):159–73.

    CAS  PubMed  Google Scholar 

  23. Signori C et al. Chemoprevention of breast cancer by fish oil in preclinical models: trials and tribulations. Cancer Res. 2011;71(19):6091–6.

    Article  CAS  PubMed  Google Scholar 

  24. Witte TR, Hardman WE. The effects of omega-3 polyunsaturated Fatty Acid consumption on mammary carcinogenesis. Lipids. 2015;50(5):437–46.

    Article  CAS  PubMed  Google Scholar 

  25. Thiebaut AC et al. Dietary intakes of omega-6 and omega-3 polyunsaturated fatty acids and the risk of breast cancer. Int J Cancer. 2009;124(4):924–31.

    Article  CAS  PubMed  Google Scholar 

  26. Weaver KL et al. The content of favorable and unfavorable polyunsaturated fatty acids found in commonly eaten fish. J Am Diet Assoc. 2008;108(7):1178–85.

    Article  CAS  PubMed  Google Scholar 

  27. Micha R et al. Global, regional, and national consumption levels of dietary fats and oils in 1990 and 2010: a systematic analysis including 266 country-specific nutrition surveys. BMJ. 2014;348:g2272.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Manni A et al. The impact of fish oil on the chemopreventive efficacy of tamoxifen against development of N-methyl-N-nitrosourea-induced rat mammary carcinogenesis. Cancer Prev Res (Phila). 2010;3(3):322–30.

    Article  CAS  Google Scholar 

  29. Manni A et al. Influence of omega-3 fatty acids on Tamoxifen-induced suppression of rat mammary carcinogenesis. Int J Cancer. 2014;134(7):1549–57.

    Article  CAS  PubMed  Google Scholar 

  30. Manni A et al. Effects of fish oil and Tamoxifen on preneoplastic lesion development and biomarkers of oxidative stress in the early stages of N-methyl-N-nitrosourea-induced rat mammary carcinogenesis. Int J Oncol. 2011;39(5):1153–64.

    CAS  PubMed  Google Scholar 

  31. Yee LD et al. Dietary (n-3) polyunsaturated fatty acids inhibit HER-2/neu-induced breast cancer in mice independently of the PPARgamma ligand rosiglitazone. J Nutr. 2005;135(5):983–8.

    CAS  PubMed  Google Scholar 

  32. Manni A et al. The effects of Tamoxifen and fish oil on mammary carcinogenesis in polyoma middle T transgenic mice. Horm Cancer. 2011;2(4):249–59.

    Article  CAS  PubMed  Google Scholar 

  33. Zhu Z et al. Mammary gland density predicts the cancer inhibitory activity of the N-3 to N-6 ratio of dietary fat. Cancer Prev Res (Phila). 2011;4(10):1675–85.

    Article  CAS  Google Scholar 

  34. Boyd NF et al. Mammographic density and the risk and detection of breast cancer. N Engl J Med. 2007;356(3):227–36.

    Article  CAS  PubMed  Google Scholar 

  35. Stone J et al. Using mammographic density to predict breast cancer risk: dense area or percentage dense area. Breast Cancer Res. 2010;12(6):R97.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Conroy SM et al. Mammographic density and risk of breast cancer by adiposity: an analysis of four case-control studies. Int J Cancer. 2011;130(8):1915–24.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yee LD et al. Omega-3 fatty acid supplements in women at high risk of breast cancer have dose-dependent effects on breast adipose tissue fatty acid composition. Am J Clin Nutr. 2010;91(5):1185–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jiang W et al. Identification of a molecular signature underlying inhibition of mammary carcinoma growth by dietary N-3 fatty acids. Cancer Res. 2012;72(15):3795–806.

    Article  CAS  PubMed  Google Scholar 

  39. Noguchi M et al. Chemoprevention of DMBA-induced mammary carcinogenesis in rats by low-dose EPA and DHA. Br J Cancer. 1997;75(3):348–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yuri T et al. Dietary docosahexaenoic acid suppresses N-methyl-N-nitrosourea-induced mammary carcinogenesis in rats more effectively than eicosapentaenoic acid. Nutr Cancer. 2003;45(2):211–7.

    Article  CAS  PubMed  Google Scholar 

  41. Pogash TJ et al. Oxidized derivative of docosahexaenoic acid preferentially inhibit cell proliferation in triple negative over luminal breast cancer cells. In Vitro Cell Dev Biol Anim. 2014;51(2):121–7.

    Article  PubMed  Google Scholar 

  42. Miller TW, Balko JM, Arteaga CL. Phosphatidylinositol 3-kinase and antiestrogen resistance in breast cancer. J Clin Oncol. 2011;29(33):4452–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bachelot T et al. Randomized phase II trial of everolimus in combination with tamoxifen in patients with hormone receptor-positive, human epidermal growth factor receptor 2-negative metastatic breast cancer with prior exposure to aromatase inhibitors: a GINECO study. J Clin Oncol. 2012;30(22):2718–24.

    Article  CAS  PubMed  Google Scholar 

  44. Bonofiglio D et al. Estrogen receptor alpha binds to peroxisome proliferator-activated receptor response element and negatively interferes with peroxisome proliferator-activated receptor gamma signaling in breast cancer cells. Clin Cancer Res. 2005;11(17):6139–47.

    Article  CAS  PubMed  Google Scholar 

  45. Wang X, Kilgore MW. Signal cross-talk between estrogen receptor alpha and beta and the peroxisome proliferator-activated receptor gamma1 in MDA-MB-231 and MCF-7 breast cancer cells. Mol Cell Endocrinol. 2002;194(1-2):123–33.

    Article  CAS  PubMed  Google Scholar 

  46. Manna S et al. Combined supplementation of vanadium and fish oil suppresses tumor growth, cell proliferation and induces apoptosis in DMBA-induced rat mammary carcinogenesis. J Cell Biochem. 2011;112(9):2327–39.

    Article  CAS  PubMed  Google Scholar 

  47. Calviello G et al. Antineoplastic effects of n-3 polyunsaturated fatty acids in combination with drugs and radiotherapy: preventive and therapeutic strategies. Nutr Cancer. 2009;61(3):287–301.

    Article  CAS  PubMed  Google Scholar 

  48. Bidinotto LT et al. Fish oil alters tamoxifen-modulated expression of mRNAs that encode genes related to differentiation, proliferation, metastasis, and immune response in rat mammary tumors. Nutr Cancer. 2012;64(7):991–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Skibinski CG et al. Proteomic changes induced by effective chemopreventive ratios of n-3:n-6 fatty acids and tamoxifen against MNU-induced mammary cancer in the rat. Cancer Prev Res (Phila). 2013;6(9):979–88.

    Article  CAS  Google Scholar 

  50. Asch HL et al. Widespread loss of gelsolin in breast cancers of humans, mice, and rats. Cancer Res. 1996;56(21):4841–5.

    CAS  PubMed  Google Scholar 

  51. Welsh J. Vitamin D metabolism in mammary gland and breast cancer. Mol Cell Endocrinol. 2011;347(1-2):55–60.

    Article  CAS  PubMed  Google Scholar 

  52. Hermeking H et al. 14-3-3 Sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell. 1997;1(1):3–11.

    Article  CAS  PubMed  Google Scholar 

  53. Zeng Z et al. A proteomics platform combining depletion, multi-lectin affinity chromatography (M-LAC), and isoelectric focusing to study the breast cancer proteome. Anal Chem. 2011;83(12):4845–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tian M et al. Proteomic analysis identifies MMP-9, DJ-1 and A1BG as overexpressed proteins in pancreatic juice from pancreatic ductal adenocarcinoma patients. BMC Cancer. 2008;8:241.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kreunin P et al. Bladder cancer associated glycoprotein signatures revealed by urinary proteomic profiling. J Proteome Res. 2007;6(7):2631–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Goufman EI et al. Two-dimensional electrophoretic proteome study of serum thermostable fraction from patients with various tumor conditions. Biochemistry (Mosc). 2006;71(4):354–60.

    Article  CAS  Google Scholar 

  57. van den Broek I et al. The absolute quantification of eight inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4)-derived peptides in serum from breast cancer patients. Proteomics Clin Appl. 2010;4(12):931–9.

    Article  PubMed  Google Scholar 

  58. Opstal-van Winden AW et al. Searching for early breast cancer biomarkers by serum protein profiling of pre-diagnostic serum; a nested case-control study. BMC Cancer. 2011;11:381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Huang Z et al. Dual effects of weight and weight gain on breast cancer risk. JAMA. 1997;278(17):1407–11.

    Article  CAS  PubMed  Google Scholar 

  60. Key T et al. Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies. J Natl Cancer Inst. 2002;94(8):606–16.

    Article  CAS  PubMed  Google Scholar 

  61. Li BD et al. Free insulin-like growth factor-I and breast cancer risk. Int J Cancer. 2001;91(5):736–9.

    Article  CAS  PubMed  Google Scholar 

  62. Papa V, Belfiore A. Insulin receptors in breast cancer: biological and clinical role. J Endocrinol Invest. 1996;19(5):324–33.

    Article  CAS  PubMed  Google Scholar 

  63. Catalano S et al. Leptin induces, via ERK1/ERK2 signal, functional activation of estrogen receptor alpha in MCF-7 cells. J Biol Chem. 2004;279(19):19908–15.

    Article  CAS  PubMed  Google Scholar 

  64. Brakenhielm E et al. Adiponectin-induced antiangiogenesis and antitumor activity involve caspase-mediated endothelial cell apoptosis. Proc Natl Acad Sci U S A. 2004;101(8):2476–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Harris RE et al. Breast cancer and nonsteroidal anti-inflammatory drugs: prospective results from the Women's Health Initiative. Cancer Res. 2003;63(18):6096–101.

    CAS  PubMed  Google Scholar 

  66. Wu MH et al. Circulating levels of leptin, adiposity and breast cancer risk. Br J Cancer. 2009;100(4):578–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Vona-Davis L, Rose DP. Adipokines as endocrine, paracrine, and autocrine factors in breast cancer risk and progression. Endocr Relat Cancer. 2007;14(2):189–206.

    Article  CAS  PubMed  Google Scholar 

  68. Subbaramaiah K et al. Obesity is associated with inflammation and elevated aromatase expression in the mouse mammary gland. Cancer Prev Res (Phila). 2011;4(3):329–46.

    Article  CAS  Google Scholar 

  69. Cancello R et al. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes. 2005;54(8):2277–86.

    Article  CAS  PubMed  Google Scholar 

  70. Morris PG et al. Inflammation and increased aromatase expression occur in the breast tissue of obese women with breast cancer. Cancer Prev Res (Phila). 2011;4(7):1021–9.

    Article  CAS  Google Scholar 

  71. Hursting SD. Inflammatory talk: linking obesity, NF-kappaB, and Aromatase. Cancer Prev Res (Phila). 2011;4(3):285–7.

    Article  CAS  Google Scholar 

  72. Bettaieb A et al. Soluble epoxide hydrolase deficiency or inhibition attenuates diet-induced endoplasmic reticulum stress in liver and adipose tissue. J Biol Chem. 2013;288(20):14189–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gonzalez-Periz A et al. Obesity-induced insulin resistance and hepatic steatosis are alleviated by omega-3 fatty acids: a role for resolvins and protectins. FASEB J. 2009;23(6):1946–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. White PJ et al. Transgenic restoration of long-chain n-3 fatty acids in insulin target tissues improves resolution capacity and alleviates obesity-linked inflammation and insulin resistance in high-fat-fed mice. Diabetes. 2010;59(12):3066–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Alfano CM et al. Fatigue, inflammation, and omega-3 and omega-6 fatty acid intake among breast cancer survivors. J Clin Oncol. 2012;30(12):1280–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Flachs P et al. Synergistic induction of lipid catabolism and anti-inflammatory lipids in white fat of dietary obese mice in response to calorie restriction and n-3 fatty acids. Diabetologia. 2011;54(10):2626–38.

    Article  CAS  PubMed  Google Scholar 

  77. Puglisi MJ, Hasty AH, Saraswathi V. The role of adipose tissue in mediating the beneficial effects of dietary fish oil. J Nutr Biochem. 2010;22(2):101–8.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Chajes V et al. omega-3 and omega-6 Polyunsaturated fatty acid intakes and the risk of breast cancer in Mexican women: impact of obesity status. Cancer Epidemiol Biomarkers Prev. 2011;21(2):319–26.

    Article  PubMed  Google Scholar 

  79. Zhang G et al. Epoxy metabolites of docosahexaenoic acid (DHA) inhibit angiogenesis, tumor growth, and metastasis. Proc Natl Acad Sci U S A. 2013;110(16):6530–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Durward CM, Hartman TJ, Nickols-Richardson SM. All-cause mortality risk of metabolically healthy obese individuals in NHANES III. J Obes. 2012;2012:460321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Stefan N et al. Identification and characterization of metabolically benign obesity in humans. Arch Intern Med. 2008;168(15):1609–16.

    Article  PubMed  Google Scholar 

  82. Wildman RP et al. The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999-2004). Arch Intern Med. 2008;168(15):1617–24.

    Article  PubMed  Google Scholar 

  83. Gunter MJ et al. Breast cancer risk in metabolically healthy but overweight postmenopausal women. Cancer Res. 2015;75(2):270–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gunter MJ et al. Insulin, insulin-like growth factor-I, and risk of breast cancer in postmenopausal women. J Natl Cancer Inst. 2009;101(1):48–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kabat GC et al. Repeated measures of serum glucose and insulin in relation to postmenopausal breast cancer. Int J Cancer. 2009;125(11):2704–10.

    Article  CAS  PubMed  Google Scholar 

  86. Catsburg C et al. Insulin, estrogen, inflammatory markers, and risk of benign proliferative breast disease. Cancer Res. 2014;74(12):3248–58.

    Article  CAS  PubMed  Google Scholar 

  87. Vanden Heuvel JP. Nutrigenomics and nutrigenetics of w3 polyunsaturated fatty acids. Prog Mol Biol Transl Sci. 2012;108:75–112.

    Article  CAS  PubMed  Google Scholar 

  88. Zhu Z et al. Effects of energy restriction and wheel running on mammary carcinogenesis and host systemic factors in a rat model. Cancer Prev Res (Phila). 2012;5(3):414–22.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Support for this work is provided by Susan G. Komen for the Cure, Grant Number KG081632 and pilot funds from the Penn State Hershey Cancer Institute

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Manni M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Manni, A. et al. (2016). The Role of Omega-3 Fatty Acids in Breast Cancer Prevention. In: Russo, J. (eds) Trends in Breast Cancer Prevention. Springer, Cham. https://doi.org/10.1007/978-3-319-27135-4_3

Download citation

Publish with us

Policies and ethics