Skip to main content

Soil-Plant Relationships in the Sabkhat of America

  • Chapter
  • First Online:
Sabkha Ecosystems

Part of the book series: Tasks for Vegetation Science ((TAVS,volume 48))

Abstract

In Sabkhat, plant ecology will depend on the soil characteristics, according to the type and dynamics of sediments and to water movement, dynamized by salt concentration and climate. Soil profile defines the ability of species to develop under its influence, according to critical variables such as soil salinity, water table depth and granulometry. Also, plant growth and development will depend on special physiological and morphological characteristics that are suited to extreme conditions in sabkhat. In America, sabkhat are the habitat of halophytic species, dwelling characteristic genera that can be found from the Columbia Basin to the Monte ecoregion. In this review soil conditions, plant characteristics and their interactions in saline basins of America will be discussed. Hydrology controls the sediment and solute chemistry, forming a dynamic cycle with halophyte vegetation. When the water table is depressed, deflation is enabled and medium-coarse particles are deposited over small hummocks, usually by the form of dunes or over tussocks, forming nabkhat. Aeolian dust may be responsible for the development and maintenance of plant communities along a salinity gradient towards the adjacent dunes in the periphery. Sabkhat hold an important pool of plant functional groups according mainly to soil salinity and water table depth. Such functional groups perform important ecological functions in the soil-plant-climate triad, such as soil formation, facilitation and zonation. These processes have a dynamic behaviour according to seasonality and climate interannual and decadal variability, assisted by anthropic impacts such as fire, overgrazing or even climatic change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abogadallah GM (2010) Antioxidative defense under salt stress. Plant Signal Behav 5:369–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abrol IP, Yadav JSP, Massoud FI (1988) Salt-affected soils and their management, vol 39. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Ayers RS, Westcot DW (1985) Water quality for agriculture, vol 29. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Barbour MG (1970) Is any angiosperm an obligate halophyte? Am Midl Nat 84:105–120

    Article  Google Scholar 

  • Barger NN, Castle SC, Dean GN (2013) Denitrification from nitrogen-fixing biologically crusted soils in a cool desert environment, southeast Utah, USA. Ecol Process 2:1–9

    Article  Google Scholar 

  • Barth HJ (2001) Comment on “Playa, Playa Lake, Sabkha: proposed definitions for old terms”. J Arid Environ 47:513–514

    Article  Google Scholar 

  • Bazihizina N, Barrett-Lennard EG, Colmer TD (2012) Plant growth and physiology under heterogeneous salinity. Plant and Soil 354:1–19

    Article  CAS  Google Scholar 

  • Blank RR, Young JA, Allen FL (1999) Aeolian dust in a saline playa environment, Nevada, USA. J Arid Environ 41:365–381

    Article  Google Scholar 

  • Briere PR (2000) Playa, Playa Lake, Sabkha: proposed definitions for old terms. J Arid Environ 45:1–7

    Article  Google Scholar 

  • Campbell RB, Bower CA, Richards LA (1948) Change of electrical conductivity with temperature and the relation of osmotic pressure to electrical conductivity and ion concentration for soil extracts. Soil Sci Soc Am Proc 13:66–69

    Article  Google Scholar 

  • Chapman VJ (1936) The halophyte problem in the light of recent investigations. Q Rev Biol 11:209–220

    Article  CAS  Google Scholar 

  • Chedlly A, Ozturk M, Ashraf M, Grignon C (eds) (2008) Biosaline agriculture and high salinity tolerance. Birkhauser Verlag (Springer Science), Basel, p 367

    Google Scholar 

  • Chepstow-Lusty A, Bush MB, Frogley MR, Baker PA, Fritz SC, Aronson J (2005) Vegetation and climate change on the Bolivian Altiplano between 108,000 and 18,000 year ago. Quatern Res 63:90–98

    Article  Google Scholar 

  • Coe KK, Belnap J, Sparks JP (2012) Precipitation-driven carbon balance controls survivorship of desert biocrust mosses. Ecology 93:1626–1636

    Article  PubMed  Google Scholar 

  • Comstock JP, Ehleringer JR (1992) Plant adaptation in the Great Basin and Colorado plateau. Great Basin Natural 52:195–215

    Google Scholar 

  • Ferreira de Carvalho J, Poulain J, Da Silva C, Wincker P, Michon-Coudouel S, Dheilly A, Naquin D, Boutte J, Salmon A, Ainouche M (2012) Transcriptome de novo assembly from next-generation sequencing and comparative analyses in the hexaploid salt marsh species Spartina maritima and Spartina alterniflora (Poaceae). Heredity 110:181–193

    Article  PubMed  PubMed Central  Google Scholar 

  • Dyksterhuis EJ (1949) Condition and management of range land based on quantitative ecology. J Range Manag 2(3):104–115

    Article  Google Scholar 

  • Gul B, Weber DJ (2001) Seed bank dynamics in a Great Basin salt playa. J Arid Environ 49:785–794

    Article  Google Scholar 

  • Gul B, Weber DJ, Khan MA (2001) Growth, ionic and osmotic relations of an Allenrolfea occidentalis population in an inland salt playa of the Great Basin Desert. J Arid Environ 48:445–460

    Article  Google Scholar 

  • Gul B, Ansari R, Flowers TJ, Khan MA (2013) Germination strategies of halophyte seeds under salinity. Environ Exp Bot 92:4–18

    Article  CAS  Google Scholar 

  • Gutiérrez Elorza M (2008) Geomorfología. Pearson–Prentice Hall, Madrid, p 898

    Google Scholar 

  • Hansen DJ, Dayanandan P, Kaufman PB, Brotherson JD (1976) Ecological adaptations of salt marsh grass, Distichlis spicata (Gramineae), and environmental factors affecting its growth and distribution. Am J Bot 63:635–650

    Article  Google Scholar 

  • Hao GY, Lucero ME, Sanderson SC, Zacharias EH, Holbrook NM (2013) Polyploidy enhances the occupation of heterogeneous environments through hydraulic related trade-offs in Atriplex canescens (Chenopodiaceae). New Phytol 197:970–978

    Article  PubMed  Google Scholar 

  • Karlin MS (2010) Geología y geomorfología. In: Coirini R, Karlin MS, Reati G (eds) Manejo Sustentable del Ecosistema Salinas Grandes, Chaco Árido. Ed. Encuentro, Córdoba, pp 55–62

    Google Scholar 

  • Karlin MS (2013) Relaciones suelo-planta en el ecosistema Salinas Grandes, Provincia de Catamarca (Argentina). Doctoral thesis. Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba

    Google Scholar 

  • Karlin MS, Coirini R, Contreras A, Buffa E (2009) Biodiversidad y potencialidad silvopastoril de cerramientos en diferentes ambientes en las Salinas Grandes, Provincia de Catamarca (Argentina). Abstracts of the I Congreso Nacional de Sistemas Silvopastoriles, Posadas, Misiones

    Google Scholar 

  • Karlin MS, Contreras A, Karlin U, Coirini R (2010) Fenología reproductiva de especies vegetales de Salinas Grandes, Catamarca, Argentina. Revista Zonas Aridas 14:233–253

    Google Scholar 

  • Karlin MS, Bachmeier OA, Dalmasso A, Sayago JM, Sereno R (2011) Environmental dynamics in Salinas Grandes, Catamarca, Argentina. Arid Land Res Manage 25:328–350

    Article  Google Scholar 

  • Karlin MS, Buffa EV, Karlin UO, Contreras AM, Coirini RO, Posse ER (2012) Relaciones entre propiedades de suelo, comunidades vegetales y receptividad ganadera en ambientes salinos (Salinas Grandes, Catamarca, Argentina). Revista Latinoamericana de Recursos Naturales 8:30–45

    Google Scholar 

  • Khan MA, Böer B, Ozturk M, Al Abdessalaam T, Clüsener-Godt M, Gul B (eds) (2014) Cash crop halophyte and biodiversity conservation. Sabkha ecosystems IV, vol 47, Tasks for vegetation science. Springer, New York, p 339

    Google Scholar 

  • Latorre C, Betancourt JL, Rylander KA, Quade J (2002) Vegetation invasions into absolute desert: a 45,000 year rodent midden record from the Calama–Salar de Atacama basins, northern Chile (lat 22°–24° S). Geol Soc Am Bull 114:349–366

    Article  Google Scholar 

  • Medina E, Francisco AM, Wingfield R, Casañas OL (2008) Halofitismo en plantas de la costa caribe de Venezuela: halófitas y halotolerantes. Acta Botánica Venezuelica 31:49–80

    Google Scholar 

  • Méndez E (1993) Dinamismo de la vegetación en la Pampa Amarilla, San Rafael, Mendoza. Multequina 1:73–81

    Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Ogburn R, Edwards EJ (2010) The ecological water-use strategies of succulent plants. Adv Bot Res 55:179–225

    Article  Google Scholar 

  • Ozturk M, Waisel Y, Khan MA, Gork G (eds) (2006) Biosaline agriculture and salinity tolerance in plants. Birkhauser Verlag (Springer Science), Basel, p 205

    Google Scholar 

  • Porter GL (1982) Vegetation-environment relationships in the tidal marshes of the Fraser River delta, British Columbia. M. Sc. thesis. Faculty of Graduate Studies, Department of Botany, University of British Columbia

    Google Scholar 

  • Pitman MG (1984) Transport across the root and shoot/root interactions. In: Staples RC, Toenniessen GH (eds) Salinity tolerance in plants. Wiley, New York, pp 93–125

    Google Scholar 

  • Ragonese AE (1951) La vegetación de la República Argentina. II.-Estudio fitosociológico de las Salinas Grandes. Revista de Investigaciones Agrícolas 5:1–233

    Google Scholar 

  • Reitemeier RF (1946) Effect of moisture content on the dissolved and exchangeable ions of soils of arid regions. Soil Sci 61:195–214

    Article  CAS  Google Scholar 

  • Richards LA (1954) Diagnosis and improvement of saline and alkali soils. Soil Sci 78:154

    Article  Google Scholar 

  • Rickard WH (1965) The influence of greasewood on soil moisture pene- tration and soil chemistry. Northwest Sci 39:36–42

    Google Scholar 

  • Rojo LD, Paez MM, Chiesa JO, Strasser EN, Schäbitz F (2012) Palinología y condiciones paleoambientales durante los últimos 12.600 cal. años AP en Salinas del Bebedero (San Luis, Argentina). Ameghiniana 49:427–441

    Article  Google Scholar 

  • Ruiz Posse E, Karlin UO, Buffa E, Karlin M, Giai Levra C, Castro G (2007) Ambientes de las Salinas Grandes de Catamarca, Argentina. Multequina 16:123–137

    Google Scholar 

  • Sage RF, Christin PA, Edwards EJ (2011) The C4 plant lineages of planet earth. J Exp Bot 62:3155–3169

    Article  CAS  PubMed  Google Scholar 

  • Scholander PF, Bradstreet ED, Hammel HT, Hemmingsen EA (1966) Sap concentrations in halophytes and some other plants. Plant Physiol 41:529–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw PA, Bryant RG (2011) Pans, playas and salt lakes. In: Thomas DS (ed) Arid zone geomorphology: process, form and change in drylands, 3rd edn. Wiley, Chichester, pp 373–401

    Chapter  Google Scholar 

  • Silva-Ortega CO, Ochoa-Alfaro AE, Reyes-Agüero JA, Aguado-Santacruz GA, Jiménez-Bremont JF (2008) Salt stress increases the expression of p5cs gene and induces proline accumulation in cactus pear. Plant Physiol Biochem 46:82–92

    Article  CAS  PubMed  Google Scholar 

  • Sívori EM, Ragonese AE (1952) Valores osmóticos en plantas de las Salinas Grandes. Revista de Investigaciones Agrícolas 6:275–280

    Google Scholar 

  • States JS, Christensen M (2001) Fungi associated with biological soil crusts in desert grasslands of Utah and Wyoming. Mycologia 93:432–439

    Article  Google Scholar 

  • Teillier S, Becerra P (2003) Flora y vegetación del salar de Ascotán, Andes del norte de Chile. Gayana Botánica 60(2):114–122

    Google Scholar 

  • Vogan PJ, Sage RF (2012) Effects of low atmospheric CO2 and elevated temperature during growth on the gas exchange responses of C3, C3–C4 intermediate, and C4 species from three evolutionary lineages of C4 photosynthesis. Oecologia 169:341–352

    Article  PubMed  Google Scholar 

  • Williams WD (2002) Environmental threats to salt lakes and the likely status of inland saline ecosystems in 2025. Environ Conserv 29:154–167

    Article  Google Scholar 

  • Yechieli Y, Wood WW (2002) Hydrogeologic processes in saline systems: playas, sabkhas, and saline lakes. Earth Sci Rev 58:343–365

    Article  CAS  Google Scholar 

  • Young JA, Evans RA, Roundy BA, Brown JA (1986) Dynamic landforms and plant communities in a pluvial lake basin. Great Basin Natural 46:1–21

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos S. Karlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Karlin, M.S. (2016). Soil-Plant Relationships in the Sabkhat of America. In: Khan, M., Boër, B., Ȫzturk, M., Clüsener-Godt, M., Gul, B., Breckle, SW. (eds) Sabkha Ecosystems. Tasks for Vegetation Science, vol 48. Springer, Cham. https://doi.org/10.1007/978-3-319-27093-7_18

Download citation

Publish with us

Policies and ethics