Skip to main content

HIV-Associated Primary Effusion Lymphoma

  • Chapter
  • First Online:
HIV-associated Hematological Malignancies

Abstract

In 1995, Cesarman and colleagues examined the DNA of 193 lymphomas from 42 patients with AIDS to 151 patients who did not have HIV infection. KSHV/HHV-8 DNA sequences were identified in eight lymphomas from HIV-infected patients. All eight, and only these eight, were body-cavity-based lymphomas as characterized by pleural, pericardial, and/or peritoneal lymphomatous effusions, defining an unusual subgroup of AIDS-associated B-cell lymphomas. They also showed that in all cases, the neoplastic cells were coinfected with EBV and designated this entity as primary effusion lymphoma (PEL). In 2001, PEL was included as a distinct entity in the World Health Organization (WHO) classification of neoplastic diseases of the hematopoietic and lymphoid tissues. PEL may also present as “extracavitary mass lesions without effusions”, commonly in the gastrointestinal tract. This is referred to as the solid variant of PEL which shares morphologic, immunophenotypic, and virologic features with classic PEL, allowing the recognition of these entities as part of the spectrum of PEL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cesarman E, Chang Y, Moore PS, et al. Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med. 1995;332(18):1186–91.

    Article  CAS  PubMed  Google Scholar 

  2. Nador RG, Cesarman E, Chadburn A, et al. Primary effusion lymphoma: a distinct clinicopathologic entity associated with the Kaposi’s sarcoma-associated herpes virus. Blood. 1996;88(2):645–56.

    CAS  PubMed  Google Scholar 

  3. Said J, Cesarman E. Primary effusion lymphoma. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues (4th ed). Lyon: International Agency for Research on Cancer; 2008.

    Google Scholar 

  4. Levine AM. Management of AIDS-related lymphoma. Curr Opin Oncol. 2008;20(5):522–8.

    Article  CAS  PubMed  Google Scholar 

  5. Carbone A, Gloghini A, Vaccher E, et al. Kaposi’s sarcoma-associated herpesvirus/human herpesvirus type 8-positive solid lymphomas: a tissue-based variant of primary effusion lymphoma. J Mol Diagn. 2005;7(1):17–27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Mylona E, Baraboutis IG, Georgiou O, et al. Solid variant of primary effusion lymphoma in successfully treated HIV infection: a case report. Int J STD AIDS. 2008;19(8):570–2.

    Article  CAS  PubMed  Google Scholar 

  7. Chadburn A, Hyjek E, Mathew S, et al. KSHV-positive solid lymphomas represent an extra-cavitary variant of primary effusion lymphoma. Am J Surg Pathol. 2004;28(11):1401–16.

    Article  PubMed  Google Scholar 

  8. Carbone A, Gloghini A. KSHV/HHV8-associated lymphomas. Br J Haematol. 2008;140(1):13–24.

    PubMed  Google Scholar 

  9. Gloghini A, Dolcetti R, Carbone A. Lymphomas occurring specifically in HIV-infected patients: from pathogenesis to pathology. Semin Cancer Biol. 2013;23(6):457–67.

    Article  CAS  PubMed  Google Scholar 

  10. Simonelli C, Spina M, Cinelli R, et al. Clinical features and outcome of primary effusion lymphoma in HIV-infected patients: a single-institution study. J Clin Oncol. 2003;21(21):3948–54.

    Article  PubMed  Google Scholar 

  11. Boulanger E, Gerard L, Gabarre J, et al. Prognostic factors and outcome of human herpesvirus 8-associated primary effusion lymphoma in patients with AIDS. J Clin Oncol. 2005;23(19):4372–80.

    Article  PubMed  Google Scholar 

  12. Oksenhendler E, Clauvel JP, Jouveshomme S, Davi F, Mansour G. Complete remission of a primary effusion lymphoma with antiretroviral therapy. Am J Hematol. 1998;57(3).

    Google Scholar 

  13. Hocqueloux L, Agbalika F, Oksenhendler E, Molina JM. Long-term remission of an AIDS-related primary effusion lymphoma with antiviral therapy. AIDS. 2001;15(2):280–2.

    Article  CAS  PubMed  Google Scholar 

  14. Crum-Cianflone NF, Wallace MR, Looney D. Successful secondary prophylaxis for primary effusion lymphoma with human herpesvirus 8 therapy. AIDS. 2006;20(11):1567–9.

    Article  PubMed  Google Scholar 

  15. Carbone A, Cesarman E, Spina M, Gloghini A, Schulz TF. HIV-associated lymphomas and gamma-herpesviruses. Blood. 2009;113(6):1213–24.

    Article  CAS  PubMed  Google Scholar 

  16. Gasperini P, Sakakibara S, Tosato G. Contribution of viral and cellular cytokines to Kaposi’s sarcoma-associated herpesvirus pathogenesis. J Leukoc Biol. 2008;84(4):994–1000.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Sunil M, Reid E, Lechowicz MJ. Update on HHV-8-associated malignancies. Curr Infect Dis Rep. 2010;12(2):147–54.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Miller G, Heston L, Grogan E, et al. Selective switch between latency and lytic replication of Kaposi’s sarcoma herpesvirus and Epstein-Barr virus in dually infected body cavity lymphoma cells. J Virol. 1997;71(1):314–24.

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Carbone A. Emerging pathways in the development of AIDS-related lymphomas. Lancet Oncol. 2003;4(1):22–9.

    Article  CAS  PubMed  Google Scholar 

  20. Carbone A, Ceserman E, Gloghini A, Drexler H. Understanding pathogenetic aspects and clinical presentation of primary effusion lymphoma through its derived cell lines. AIDS. 2010;24(4):479–90.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Casper C, Krantz EM, Corey L, et al. Valganciclovir for suppression of human herpesvirus-8 replication: a randomized, double-blind, placebo-controlled, crossover trial. J Infect Dis. 2008;198(1):23–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Aoki Y, Tosato G, Nambu Y, Iwamoto A, Yarchoan R. Detection of vascular endothelial growth factor in AIDS-related primary effusion lymphomas. Blood. 2000;95(3):1109–10.

    CAS  PubMed  Google Scholar 

  23. Aoki Y, Yarchoan R, Braun J, Iwamoto A, Tosato G. Viral and cellular cytokines in AIDS-related malignant lymphomatous effusions. Blood. 2000;96(4):1599–601.

    CAS  PubMed  Google Scholar 

  24. Ammari ZA, Mollberg NM, Abdelhady K, Mansueto MD, Massad MG. Diagnosis and management of primary effusion lymphoma in the immunocompetent and immunocompromised hosts. Thorac Cardiovasc Surg. 2013;61(4):343–9.

    Article  PubMed  Google Scholar 

  25. Simonelli C, Tedeschi R, Gloghini A, et al. Plasma HHV-8 viral load in HHV-8-related lymphoproliferative disorders associated with HIV infection. J Med Virol. 2009;81(5):888–96.

    Article  CAS  PubMed  Google Scholar 

  26. Antinori A, Cingolani A, Alba L, et al. Better response to chemotherapy and prolonged survival in AIDS-related lymphomas responding to highly active antiretroviral therapy. AIDS. 2001;15(12):1483–91.

    Article  CAS  PubMed  Google Scholar 

  27. Besson C, Goubar A, Gabarre J, et al. Changes in AIDS-related lymphoma since the era of highly active antiretroviral therapy. Blood. 2001;98(8):2339–44.

    Article  CAS  PubMed  Google Scholar 

  28. Chow KU, Mitrou PS, Geduldig K, et al. Changing incidence and survival in patients with aids-related non-Hodgkin’s lymphomas in the era of highly active antiretroviral therapy (HAART). Leuk Lymphoma. 2001;41(1–2):105–16.

    Article  CAS  PubMed  Google Scholar 

  29. Ezzat H, Filipenko D, Vickars L, et al. Improved survival in HIV-associated diffuse large B-cell lymphoma with the addition of rituximab to chemotherapy in patients receiving highly active antiretroviral therapy. HIV Clin Trials. 2007;8(3):132–44.

    Article  CAS  PubMed  Google Scholar 

  30. Kirk O, Pedersen C, Cozzi-Lepri A, et al. Non-Hodgkin lymphoma in HIV-infected patients in the era of highly active antiretroviral therapy. Blood. 2001;98(12):3406–12.

    Article  CAS  PubMed  Google Scholar 

  31. Matthews GV, Bower M, Mandalia S, et al. Changes in acquired immunodeficiency syndrome-related lymphoma since the introduction of highly active antiretroviral therapy. Blood. 2000;96(8):2730–4.

    CAS  PubMed  Google Scholar 

  32. Navarro JT, Ribera JM, Oriol A, et al. Improved outcome of AIDS-related lymphoma in patients with virologic response to highly active antiretroviral therapy. J Acquir Immune Defic Syndr. 2003;32(3):347–8.

    Article  PubMed  Google Scholar 

  33. Vaccher E, di Gennaro G, Shioppa O, et al. Highly active antiretroviral therapy (HAART) significantly improves disease free survival (DFS) in patients (pts) with HIV-related non-Hodgkin’s lymphoma (HIV-NHL) treated with chemotherapy (CT). Proc ASCO. 2001;20(2):294a.

    Google Scholar 

  34. Little RF, Pittaluga S, Grant N, et al. Highly effective treatment of acquired immunodeficiency syndrome-related lymphoma with dose-adjusted EPOCH: impact of antiretroviral therapy suspension and tumor biology. Blood. 2003;101(12):4653–9.

    Article  CAS  PubMed  Google Scholar 

  35. Ripamonti D, Marini B, Rambaldi A, Suter F. Treatment of primary effusion lymphoma with highly active antiviral therapy in the setting of HIV infection. AIDS. 2008;22(10):1236–7.

    Article  PubMed  Google Scholar 

  36. Chen Y-B, Rahemtullah A, Hochberg E. Primary effusion lymphoma. Oncologist. 2007;12(5):569–76.

    Article  PubMed  Google Scholar 

  37. Okada S, Goto H, Yotsumoto M. Current status of treatment for primary effusion lymphoma. Intractable Rare Dis Res. 2014;3(3):65–74.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Sparano JA, Lee S, Chen MG, et al. Phase II trial of infusional cyclophosphamide, doxorubicin, and etoposide in patients with HIV-associated non-Hodgkin’s lymphoma: an Eastern Cooperative Oncology Group Trial (E1494). J Clin Oncol. 2004;22(8):1491–500.

    Article  CAS  PubMed  Google Scholar 

  39. Little RF, Merced-Galindez F, Staskus K, et al. A pilot study of cidofovir in patients with kaposi sarcoma. J Infect Dis. 2003;187(1):149–53.

    Article  CAS  PubMed  Google Scholar 

  40. Casper C, Nichols WG, Huang ML, Corey L, Wald A. Remission of HHV-8 and HIV-associated multicentric Castleman disease with ganciclovir treatment. Blood. 2004;103(5):1632–4.

    Article  CAS  PubMed  Google Scholar 

  41. Halfdanarson TR, Markovic SN, Kalokhe U, Luppi M. A non-chemotherapy treatment of a primary effusion lymphoma: durable remission after intracavitary cidofovir in HIV negative PEL refractory to chemotherapy. Ann Oncol. 2006;17(12):1849–50.

    Article  CAS  PubMed  Google Scholar 

  42. Luppi M, Trovato R, Barozzi P, et al. Treatment of herpesvirus associated primary effusion lymphoma with intracavity cidofovir. Leukemia. 2005;19(3):473–6.

    Article  CAS  PubMed  Google Scholar 

  43. Boulanger E, Daniel MT, Agbalika F, Oksenhendler E. Combined chemotherapy including high-dose methotrexate in KSHV/HHV8-associated primary effusion lymphoma. Am J Hematol. 2003;73(3):143–8.

    Article  CAS  PubMed  Google Scholar 

  44. Waddington TW, Aboulafia DM. Failure to eradicate AIDS-associated primary effusion lymphoma with high-dose chemotherapy and autologous stem cell reinfusion: case report and literature review. AIDS Patient Care STDS. 2004;18(2):67–73.

    Article  PubMed  Google Scholar 

  45. Bhatt S, Ashlock BM, Natkunam Y, et al. CD30 targeting with brentuximab vedotin: a novel therapeutic approach to primary effusion lymphoma. Blood. 2013;122(7):1233–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Haque M, Kousoulas KG. The Kaposi’s sarcoma-associated herpesvirus ORF34 protein binds to HIF-1alpha and causes its degradation via the proteasome pathway. J Virol. 2013;87(4):2164–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Saji C, Higashi C, Niinaka Y, et al. Proteasome inhibitors induce apoptosis and reduce viral replication in primary effusion lymphoma cells. Biochem Biophys Res Commun. 2011;415(4):573–8.

    Article  CAS  PubMed  Google Scholar 

  48. Abou-Merhi R, Khoriaty R, Arnoult D, et al. PS-341 or a combination of arsenic trioxide and interferon-alpha inhibit growth and induce caspase-dependent apoptosis in KSHV/HHV-8-infected primary effusion lymphoma cells. Leukemia. 2007;21(8):1792–801.

    Article  CAS  PubMed  Google Scholar 

  49. Matta H, Chaudhary PM. The proteasome inhibitor bortezomib (PS-341) inhibits growth and induces apoptosis in primary effusion lymphoma cells. Cancer Biol Ther. 2005;4(1):77–82.

    Article  CAS  PubMed  Google Scholar 

  50. An J, Sun Y, Fisher M, Rettig MB. Antitumor effects of bortezomib (PS-341) on primary effusion lymphomas. Leukemia. 2004;18(10):1699–704.

    Article  CAS  PubMed  Google Scholar 

  51. Wu FY, Wang SE, Tang QQ, et al. Cell cycle arrest by Kaposi’s sarcoma-associated herpesvirus replication-associated protein is mediated at both the transcriptional and posttranslational levels by binding to CCAAT/enhancer-binding protein alpha and p21(CIP-1). J Virol. 2003;77(16):8893–914.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Dabaghmanesh N, Matsubara A, Miyake A, et al. Transient inhibition of NF-kappaB by DHMEQ induces cell death of primary effusion lymphoma without HHV-8 reactivation. Cancer Sci. 2009;100(4):737–46.

    Article  CAS  PubMed  Google Scholar 

  53. Bhatt S, Ashlock BM, Toomey NL, et al. Efficacious proteasome/HDAC inhibitor combination therapy for primary effusion lymphoma. J Clin Invest. 2013;123(6):2616–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Goto H, Kudo E, Kariya R, et al. Targeting VEGF and interleukin-6 for controlling malignant effusion of primary effusion lymphoma. J Cancer Res Clin Oncol. 2015;141(3):465–74.

    Article  CAS  PubMed  Google Scholar 

  55. Haddad L, El Hajj H, Abou-Merhi R, et al. KSHV-transformed primary effusion lymphoma cells induce a VEGF-dependent angiogenesis and establish functional gap junctions with endothelial cells. Leukemia. 2008;22(4):826–34.

    Article  CAS  PubMed  Google Scholar 

  56. Aoki Y, Tosato G. Vascular endothelial growth factor/vascular permeability factor in the pathogenesis of primary effusion lymphomas. Leuk Lymphoma. 2001;41(3–4):229–37.

    Article  CAS  PubMed  Google Scholar 

  57. Bottero V, Sadagopan S, Johnson KE, et al. Kaposi’s sarcoma-associated herpesvirus-positive primary effusion lymphoma tumor formation in NOD/SCID mice is inhibited by neomycin and neamine blocking angiogenin’s nuclear translocation. J Virol. 2013;87(21):11806–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Paul AG, Sharma-Walia N, Chandran B. Targeting KSHV/HHV-8 latency with COX-2 selective inhibitor nimesulide: a potential chemotherapeutic modality for primary effusion lymphoma. PLoS One. 2011;6(9):e24379.

    Article  CAS  PubMed  Google Scholar 

  59. Sun Z, Xiao B, Jha HC, et al. Kaposi’s sarcoma-associated herpesvirus-encoded LANA can induce chromosomal instability through targeted degradation of the mitotic checkpoint kinase Bub1. J Virol. 2014;88(13):7367–78.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Santag S, Jager W, Karsten CB, et al. Recruitment of the tumour suppressor protein p73 by Kaposi’s Sarcoma Herpesvirus latent nuclear antigen contributes to the survival of primary effusion lymphoma cells. Oncogene. 2013;32(32):3676–85.

    Article  CAS  PubMed  Google Scholar 

  61. Chen W, Hilton IB, Staudt MR, Burd CE, Dittmer DP. Distinct p53, p53:LANA, and LANA complexes in Kaposi’s Sarcoma – associated Herpesvirus lymphomas. J Virol. 2010;84(8):3898–908.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Lan K, Murakami M, Bajaj B, et al. Inhibition of KSHV-infected primary effusion lymphomas in NOD/SCID mice by gamma-secretase inhibitor. Cancer Biol Ther. 2009;8(22):2136–43.

    Article  CAS  PubMed  Google Scholar 

  63. Liu J, Martin HJ, Liao G, Hayward SD. The Kaposi’s sarcoma-associated herpesvirus LANA protein stabilizes and activates c-Myc. J Virol. 2007;81(19):10451–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Bubman D, Guasparri I, Cesarman E. Deregulation of c-Myc in primary effusion lymphoma by Kaposi’s sarcoma herpesvirus latency-associated nuclear antigen. Oncogene. 2007;26(34):4979–86.

    Article  CAS  PubMed  Google Scholar 

  65. An J, Sun Y, Rettig MB. Transcriptional coactivation of c-Jun by the KSHV-encoded LANA. Blood. 2004;103(1):222–8.

    Article  CAS  PubMed  Google Scholar 

  66. Fujimuro M, Hayward SD. The latency-associated nuclear antigen of Kaposi’s sarcoma-associated herpesvirus manipulates the activity of glycogen synthase kinase-3beta. J Virol. 2003;77(14):8019–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Katano H, Sato Y, Sata T. Expression of p53 and human herpesvirus-8 (HHV-8)-encoded latency-associated nuclear antigen with inhibition of apoptosis in HHV-8-associated malignancies. Cancer. 2001;92(12):3076–84.

    Article  CAS  PubMed  Google Scholar 

  68. Krithivas A, Young DB, Liao G, Greene D, Hayward SD. Human herpesvirus 8 LANA interacts with proteins of the mSin3 corepressor complex and negatively regulates Epstein-Barr virus gene expression in dually infected PEL cells. J Virol. 2000;74(20):9637–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Ballestas ME, Chatis PA, Kaye KM. Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science. 1999;284(5414):641–4.

    Article  CAS  PubMed  Google Scholar 

  70. Gantt S, Casper C. Human herpesvirus 8-associated neoplasms: the roles of viral replication and antiviral treatment. Curr Opin Infect Dis. 2011;24(4):295–301.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Klass CM, Krug LT, Pozharskaya VP, Offermann MK. The targeting of primary effusion lymphoma cells for apoptosis by inducing lytic replication of human herpesvirus 8 while blocking virus production. Blood. 2005;105(10):4028–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Yu Y, Black JB, Goldsmith CS, et al. Induction of human herpesvirus-8 DNA replication and transcription by butyrate and TPA in BCBL-1 cells. J Gen Virol. 1999;80(Pt 1):83–90.

    Article  CAS  PubMed  Google Scholar 

  73. Shaw RN, Arbiser JL, Offermann MK. Valproic acid induces human herpesvirus 8 lytic gene expression in BCBL-1 cells. AIDS. 2000;14(7):899–902.

    Article  CAS  PubMed  Google Scholar 

  74. Boulanger E, Agbalika F, Maarek O, et al. A clinical, molecular and cytogenetic study of 12 cases of human herpesvirus 8 associated primary effusion lymphoma in HIV-infected patients. Hematol J. 2001;2(3):172–9.

    Article  CAS  PubMed  Google Scholar 

  75. Pastore RD, Chadburn A, Kripas C, Schattner EJ. Novel association of haemophagocytic syndrome with Kaposi’s sarcoma-associated herpesvirus-related primary effusion lymphoma. Br J Haematol. 2000;111(4):1112–5.

    Article  CAS  PubMed  Google Scholar 

  76. Drexler HG, Meyer C, Gaidano G, Carbone A. Constitutive cytokine production by primary effusion (body cavity-based) lymphoma-derived cell lines. Leukemia. 1999;13(4):634–40.

    Article  CAS  PubMed  Google Scholar 

  77. Asou H, Said JW, Yang R, et al. Mechanisms of growth control of Kaposi’s sarcoma-associated herpes virus-associated primary effusion lymphoma cells. Blood. 1998;91(7):2475–81.

    CAS  PubMed  Google Scholar 

  78. Zhang YJ, Bonaparte RS, Patel D, Stein DA, Iversen PL. Blockade of viral interleukin-6 expression of Kaposi’s sarcoma-associated herpesvirus. Mol Cancer Ther. 2008;7(3):712–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Thapa DR, Li X, Jamieson BD, Martinez-Maza O. Overexpression of microRNAs from the miR-17-92 paralog clusters in AIDS-related non-Hodgkin’s lymphomas. PLoS One. 2011;6(6):e20781.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Sun Y, Huang PL, Li JJ, et al. Anti-HIV agent MAP30 modulates the expression profile of viral and cellular genes for proliferation and apoptosis in AIDS-related lymphoma cells infected with Kaposi’s sarcoma-associated virus. Biochem Biophys Res Commun. 2001;287(4):983–94.

    Article  CAS  PubMed  Google Scholar 

  81. Sarek G, Kurki S, Enback J, et al. Reactivation of the p53 pathway as a treatment modality for KSHV-induced lymphomas. J Clin Invest. 2007;117(4):1019–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Otvos R, Skribek H, Kis LL, et al. Drug sensitivity patterns of HHV8 carrying body cavity lymphoma cell lines. BMC Cancer. 2011;11:441.

    Article  PubMed Central  PubMed  Google Scholar 

  83. Zhang YJ, Patel D, Nan Y, Fan S. Inhibition of primary effusion lymphoma engraftment in SCID mice by morpholino oligomers against early lytic genes of Kaposi’s sarcoma-associated herpesvirus. Antivir Ther. 2011;16(5):657–66.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Laura Kuyper described the features, treatment, and outcome of five patients with HIV-NHL treated at St. Paul’s Hospital in the ART era in 2009.

Dr. Musa Al-Zahrani described the features, treatment, and outcome of 12 patients with HIV/(HHV-8)-related multicentric Castleman disease in 2012 and critically reviewed this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather A. Leitch MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Leitch, H.A., Oksenhendler, E. (2016). HIV-Associated Primary Effusion Lymphoma. In: Hentrich, M., Barta, S. (eds) HIV-associated Hematological Malignancies. Springer, Cham. https://doi.org/10.1007/978-3-319-26857-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26857-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26855-2

  • Online ISBN: 978-3-319-26857-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics