Skip to main content

Signal Transducer and Activation of Transcription 3: A Master Regulator of Myeloid-Derived Suppressor Cells

  • Chapter
  • First Online:
Myeloid-Derived Suppressor Cells and Cancer

Part of the book series: SpringerBriefs in Immunology ((BRIEFSIMMUN))

  • 642 Accesses

Abstract

Cancer progression is determined by cancer cells as well as various immune cells that make up the tumor microenvironment (TME). These immune cells consist of so-called effector cells such as natural killer cells and cytotoxic T lymphocytes, which fight cancer progression, and of immunosuppressive immune cells including regulatory T cells and immature myeloid cells, which aid tumor progression. Immature myeloid cells in the TME are further divided into several populations, amongst which are tumor-associated dendritic cells (TADC), tumor-associated macrophages (TAM), and myeloid-derived suppressor cells (MDSC). While TADC and TAM can be found in different activation states, MDSC can be further subdivided in two subsets: polymorphonuclear and monocytic MDSC. In recent years, MDSC received much attention as they are believed to exert a plethora of inhibitory mechanisms to create a tumor promoting TME. The recruitment, activation, and function of MDSC in the TME are largely determined by the transcription factor signal transducer and activator of transcription 3 (STAT3). Therefore, this review will focus on the role of this key signaling pathway during the MDSC life cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T (2014) Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer 14(2):135–146. doi:10.1038/nrc3670 nrc3670 [pii]

  2. Brossart P, Bevan MJ (1997) Presentation of exogenous protein antigens on major histocompatibility complex class I molecules by dendritic cells: pathway of presentation and regulation by cytokines. Blood 90(4):1594–1599

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hildner K, Edelson BT, Purtha WE, Diamond M, Matsushita H, Kohyama M, Calderon B, Schraml BU, Unanue ER, Diamond MS, Schreiber RD, Murphy TL, Murphy KM (2008) Batf3 deficiency reveals a critical role for CD8alpha + dendritic cells in cytotoxic T cell immunity. Science 322(5904):1097–1100. doi:10.1126/science.1164206 322/5904/1097 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pradeu T, Cooper EL (2012) The danger theory: 20 years later. Front Immunol 3:287. doi:10.3389/fimmu.2012.00287

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bonehill A, Heirman C, Thielemans K (2005) Genetic approaches for the induction of a CD4 + T cell response in cancer immunotherapy. J Gene Med 7(6):686–695. doi:10.1002/jgm.713

    Article  CAS  PubMed  Google Scholar 

  6. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:10.1016/j.cell.2011.02.013 S0092-8674(11)00127-9 [pii]

    Article  CAS  PubMed  Google Scholar 

  7. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3(11):991–998. doi:10.1038/ni1102-991 ni1102-991 [pii]

    Article  CAS  PubMed  Google Scholar 

  8. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12(4):253–268. doi:10.1038/nri3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jiang J, Guo W, Liang X (2014) Phenotypes, accumulation, and functions of myeloid-derived suppressor cells and associated treatment strategies in cancer patients. Hum Immunol 75(11):1128–1137. doi:10.1016/j.humimm.2014.09.025 S0198-8859(14)00465-0 [pii]

    Article  CAS  PubMed  Google Scholar 

  10. Poschke I, Mougiakakos D, Hansson J, Masucci GV, Kiessling R (2010) Immature immunosuppressive CD14 + HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Res 70(11):4335–4345. doi:10.1158/0008-5472.CAN-09-3767 0008-5472.CAN-09-3767 [pii]

    Article  CAS  PubMed  Google Scholar 

  11. Nefedova Y, Huang M, Kusmartsev S, Bhattacharya R, Cheng P, Salup R, Jove R, Gabrilovich D (2004) Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer. J Immunol 172(1):464–474

    Article  CAS  PubMed  Google Scholar 

  12. Cheng P, Corzo CA, Luetteke N, Yu B, Nagaraj S, Bui MM, Ortiz M, Nacken W, Sorg C, Vogl T, Roth J, Gabrilovich DI (2008) Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med 205(10):2235–2249. doi:10.1084/jem.20080132 jem.20080132 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Emeagi PU, Maenhout S, Dang N, Heirman C, Thielemans K, Breckpot K (2013) Downregulation of Stat3 in melanoma: reprogramming the immune microenvironment as an anticancer therapeutic strategy. Gene Ther 20(11):1085–1092. doi:10.1038/gt.2013.35 gt201335 [pii]

    Article  CAS  PubMed  Google Scholar 

  14. Maenhout SK, Du Four S, Corthals J, Neyns B, Thielemans K, Aerts JL (2014) AZD1480 delays tumor growth in a melanoma model while enhancing the suppressive activity of myeloid-derived suppressor cells. Oncotarget 5(16):6801–6815. doi:10.18632/oncotarget.2254 2254 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rebe C, Vegran F, Berger H, Ghiringhelli F (2013) STAT3 activation: A key factor in tumor immunoescape. JAKSTAT 2(1):e23010. doi:10.4161/jkst.23010 2012JAKS0054R [pii]

    PubMed  PubMed Central  Google Scholar 

  16. Kishimoto T, Akira S, Narazaki M, Taga T (1995) Interleukin-6 family of cytokines and gp130. Blood 86(4):1243–1254

    CAS  PubMed  Google Scholar 

  17. Akira S (1999) Functional roles of STAT family proteins: lessons from knockout mice. Stem Cells 17(3):138–146. doi:10.1002/stem.170138

    Article  CAS  PubMed  Google Scholar 

  18. Zhong Z, Wen Z, Darnell JE Jr (1994) Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 264(5155):95–98

    Article  CAS  PubMed  Google Scholar 

  19. Hirano T, Ishihara K, Hibi M (2000) Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene 19(21):2548–2556. doi:10.1038/sj.onc.1203551

    Article  CAS  PubMed  Google Scholar 

  20. Yuan ZL, Guan YJ, Chatterjee D, Chin YE (2005) Stat3 dimerization regulated by reversible acetylation of a single lysine residue. Science 307(5707):269–273. doi:10.1126/science.1105166 307/5707/269 [pii]

    Article  CAS  PubMed  Google Scholar 

  21. Shuai K, Liu B (2005) Regulation of gene-activation pathways by PIAS proteins in the immune system. Nat Rev Immunol 5(8):593–605. doi:10.1038/nri1667 nri1667 [pii]

    Article  CAS  PubMed  Google Scholar 

  22. Alexander WS, Hilton DJ (2004) The role of suppressors of cytokine signaling (SOCS) proteins in regulation of the immune response. Annu Rev Immunol 22:503–529. doi:10.1146/annurev.immunol.22.091003.090312

    Article  CAS  PubMed  Google Scholar 

  23. Irie-Sasaki J, Sasaki T, Matsumoto W, Opavsky A, Cheng M, Welstead G, Griffiths E, Krawczyk C, Richardson CD, Aitken K, Iscove N, Koretzky G, Johnson P, Liu P, Rothstein DM, Penninger JM (2001) CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling. Nature 409(6818):349–354. doi:10.1038/35053086

    Article  CAS  PubMed  Google Scholar 

  24. Schaper F, Gendo C, Eck M, Schmitz J, Grimm C, Anhuf D, Kerr IM, Heinrich PC (1998) Activation of the protein tyrosine phosphatase SHP2 via the interleukin-6 signal transducing receptor protein gp130 requires tyrosine kinase Jak1 and limits acute-phase protein expression. Biochem J 335(Pt 3):557–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Daino H, Matsumura I, Takada K, Odajima J, Tanaka H, Ueda S, Shibayama H, Ikeda H, Hibi M, Machii T, Hirano T, Kanakura Y (2000) Induction of apoptosis by extracellular ubiquitin in human hematopoietic cells: possible involvement of STAT3 degradation by proteasome pathway in interleukin 6-dependent hematopoietic cells. Blood 95(8):2577–2585

    CAS  PubMed  Google Scholar 

  26. Yang CH, Fan M, Slominski AT, Yue J (2010) Pfeffer LM (2010) The role of constitutively activated STAT3 in B16 melanoma cells. Int J Infereron Cytokine Mediator Res 2:1–7. doi:10.2147/IJICMR.S6657

    CAS  Google Scholar 

  27. Liu Y, Deng J, Wang L, Lee H, Armstrong B, Scuto A, Kowolik C, Weiss LM, Forman S, Yu H (2012) S1PR1 is an effective target to block STAT3 signaling in activated B cell-like diffuse large B-cell lymphoma. Blood 120(7):1458–1465. doi:10.1182/blood-2011-12-399030 blood-2011-12-399030 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tkach M, Coria L, Rosemblit C, Rivas MA, Proietti CJ, Diaz Flaque MC, Beguelin W, Frahm I, Charreau EH, Cassataro J, Elizalde PV, Schillaci R (2012) Targeting Stat3 induces senescence in tumor cells and elicits prophylactic and therapeutic immune responses against breast cancer growth mediated by NK cells and CD4 + T cells. J Immunol 189(3):1162–1172. doi:10.4049/jimmunol.1102538 jimmunol.1102538 [pii]

    Article  CAS  PubMed  Google Scholar 

  29. Buettner R, Mora LB, Jove R (2002) Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin Cancer Res 8(4):945–954

    CAS  PubMed  Google Scholar 

  30. Bowman T, Garcia R, Turkson J, Jove R (2000) STATs in oncogenesis. Oncogene 19(21):2474–2488. doi:10.1038/sj.onc.1203527

    Article  CAS  PubMed  Google Scholar 

  31. Krasilnikov M, Ivanov VN, Dong J, Ronai Z (2003) ERK and PI3 K negatively regulate STAT-transcriptional activities in human melanoma cells: implications towards sensitization to apoptosis. Oncogene 22(26):4092–4101. doi:10.1038/sj.onc.1206598 1206598 [pii]

    Article  CAS  PubMed  Google Scholar 

  32. Darnell JE (2005) Validating Stat3 in cancer therapy. Nat Med 11(6):595–596. doi:10.1038/nm0605-595 nm0605-595 [pii]

    Article  CAS  PubMed  Google Scholar 

  33. Hung MH, Tai WT, Shiau CW, Chen KF (2014) Downregulation of signal transducer and activator of transcription 3 by sorafenib: a novel mechanism for hepatocellular carcinoma therapy. World J Gastroenterol 20(41):15269–15274. doi:10.3748/wjg.v20.i41.15269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Scuto A, Kujawski M, Kowolik C, Krymskaya L, Wang L, Weiss LM, Digiusto D, Yu H, Forman S, Jove R (2011) STAT3 inhibition is a therapeutic strategy for ABC-like diffuse large B-cell lymphoma. Cancer Res 71(9):3182–3188. doi:10.1158/0008-5472.CAN-10-2380 0008-5472.CAN-10-2380 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Catlett-Falcone R, Landowski TH, Oshiro MM, Turkson J, Levitzki A, Savino R, Ciliberto G, Moscinski L, Fernandez-Luna JL, Nunez G, Dalton WS, Jove R (1999) Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 10(1):105–115. doi:10.1016/S1074-7613(00)80011-4 [pii]

    Article  CAS  PubMed  Google Scholar 

  36. Kusmartsev S, Cheng F, Yu B, Nefedova Y, Sotomayor E, Lush R, Gabrilovich D (2003) All-trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination. Cancer Res 63(15):4441–4449

    CAS  PubMed  Google Scholar 

  37. Nagaraj S, Youn JI, Weber H, Iclozan C, Lu L, Cotter MJ, Meyer C, Becerra CR, Fishman M, Antonia S, Sporn MB, Liby KT, Rawal B, Lee JH, Gabrilovich DI (2010) Anti-inflammatory triterpenoid blocks immune suppressive function of MDSCs and improves immune response in cancer. Clin Cancer Res 16(6):1812–1823. doi:10.1158/1078-0432.CCR-09-3272 1078-0432.CCR-09-3272 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Iclozan C, Antonia S, Chiappori A, Chen DT, Gabrilovich D (2013) Therapeutic regulation of myeloid-derived suppressor cells and immune response to cancer vaccine in patients with extensive stage small cell lung cancer. Cancer Immunol Immunother 62(5):909–918. doi:10.1007/s00262-013-1396-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wesolowski R, Markowitz J, Carson WE 3rd (2013) Myeloid derived suppressor cells - a new therapeutic target in the treatment of cancer. Journal for immunotherapy of cancer 1:10. doi:10.1186/2051-1426-1-10

    Article  PubMed  PubMed Central  Google Scholar 

  40. Poschke I, Mao Y, Adamson L, Salazar-Onfray F, Masucci G, Kiessling R (2012) Myeloid-derived suppressor cells impair the quality of dendritic cell vaccines. Cancer Immunol Immunother 61(6):827–838. doi:10.1007/s00262-011-1143-y

    Article  CAS  PubMed  Google Scholar 

  41. Bose A, Taylor JL, Alber S, Watkins SC, Garcia JA, Rini BI, Ko JS, Cohen PA, Finke JH, Storkus WJ (2011) Sunitinib facilitates the activation and recruitment of therapeutic anti-tumor immunity in concert with specific vaccination. Int J Cancer 129(9):2158–2170. doi:10.1002/ijc.25863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Draghiciu O, Nijman HW, Hoogeboom BN, Meijerhof T, Daemen T (2015) Sunitinib depletes myeloid-derived suppressor cells and synergizes with a cancer vaccine to enhance antigen-specific immune responses and tumor eradication. Oncoimmunology 4(3):e989764. doi:10.4161/2162402X.2014.989764 989764 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Strober S (1984) Natural suppressor (NS) cells, neonatal tolerance, and total lymphoid irradiation: exploring obscure relationships. Annu Rev Immunol 2:219–237. doi:10.1146/annurev.iy.02.040184.001251

    Article  CAS  PubMed  Google Scholar 

  44. Gabrilovich DI, Bronte V, Chen SH, Colombo MP, Ochoa A, Ostrand-Rosenberg S, Schreiber H (2007) The terminology issue for myeloid-derived suppressor cells. Cancer Res 67(1):425, author reply 426. doi:10.1158/0008-5472.CAN-06-3037 67/1/425 [pii]

  45. Bronte V, Serafini P, Apolloni E, Zanovello P (2001) Tumor-induced immune dysfunctions caused by myeloid suppressor cells. J Immunother 24(6):431–446

    Article  CAS  PubMed  Google Scholar 

  46. Sawanobori Y, Ueha S, Kurachi M, Shimaoka T, Talmadge JE, Abe J, Shono Y, Kitabatake M, Kakimi K, Mukaida N, Matsushima K (2008) Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood 111(12):5457–5466. doi:10.1182/blood-2008-01-136895 blood-2008-01-136895 [pii]

    Article  CAS  PubMed  Google Scholar 

  47. Zhang H, Nguyen-Jackson H, Panopoulos AD, Li HS, Murray PJ, Watowich SS (2010) STAT3 controls myeloid progenitor growth during emergency granulopoiesis. Blood 116(14):2462–2471. doi:10.1182/blood-2009-12-259630 blood-2009-12-259630 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Marigo I, Bosio E, Solito S, Mesa C, Fernandez A, Dolcetti L, Ugel S, Sonda N, Bicciato S, Falisi E, Calabrese F, Basso G, Zanovello P, Cozzi E, Mandruzzato S, Bronte V (2010) Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity 32(6):790–802. doi:10.1016/j.immuni.2010.05.010 S1074-7613(10)00202-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  49. Hirai H, Zhang P, Dayaram T, Hetherington CJ, Mizuno S, Imanishi J, Akashi K, Tenen DG (2006) C/EBPbeta is required for ‘emergency’ granulopoiesis. Nat Immunol 7(7):732–739. doi:10.1038/ni1354 ni1354 [pii]

    Article  CAS  PubMed  Google Scholar 

  50. Trikha P, Carson WE (1846) 3rd (2014) Signaling pathways involved in MDSC regulation. Biochim Biophys Acta 1:55–65. doi:10.1016/j.bbcan.2014.04.003 S0304-419X(14)00039-0 [pii]

    Google Scholar 

  51. Foell D, Wittkowski H, Vogl T, Roth J (2007) S100 proteins expressed in phagocytes: a novel group of damage-associated molecular pattern molecules. J Leukoc Biol 81(1):28–37. doi:10.1189/jlb.0306170 jlb.0306170 [pii]

    Article  CAS  PubMed  Google Scholar 

  52. Farren MR, Carlson LM, Lee KP (2010) Tumor-mediated inhibition of dendritic cell differentiation is mediated by down regulation of protein kinase C beta II expression. Immunol Res 46(1–3):165–176. doi:10.1007/s12026-009-8118-5

    Article  CAS  PubMed  Google Scholar 

  53. Poschke I, Kiessling R (2012) On the armament and appearances of human myeloid-derived suppressor cells. Clin Immunol 144(3):250–268. doi:10.1016/j.clim.2012.06.003 S1521-6616(12)00157-X [pii]

    Article  CAS  PubMed  Google Scholar 

  54. Bronte V, Wang M, Overwijk WW, Surman DR, Pericle F, Rosenberg SA, Restifo NP (1998) Apoptotic death of CD8 + T lymphocytes after immunization: induction of a suppressive population of Mac-1 +/Gr-1 + cells. J Immunol 161(10):5313–5320

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Movahedi K, Guilliams M, Van den Bossche J, Van den Bergh R, Gysemans C, Beschin A, De Baetselier P, Van Ginderachter JA (2008) Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 111(8):4233–4244. doi:10.1182/blood-2007-07-099226 blood-2007-07-099226 [pii]

    Article  CAS  PubMed  Google Scholar 

  56. Almand B, Clark JI, Nikitina E, van Beynen J, English NR, Knight SC, Carbone DP, Gabrilovich DI (2001) Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 166(1):678–689

    Article  CAS  PubMed  Google Scholar 

  57. Huang B, Pan PY, Li Q, Sato AI, Levy DE, Bromberg J, Divino CM, Chen SH (2006) Gr-1 + CD115 + immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 66(2):1123–1131. doi:10.1158/0008-5472.CAN-05-1299 66/2/1123 [pii]

    Article  CAS  PubMed  Google Scholar 

  58. Pan PY, Ma G, Weber KJ, Ozao-Choy J, Wang G, Yin B, Divino CM, Chen SH (2010) Immune stimulatory receptor CD40 is required for T-cell suppression and T regulatory cell activation mediated by myeloid-derived suppressor cells in cancer. Cancer Res 70(1):99–108. doi:10.1158/0008-5472.CAN-09-1882 0008-5472.CAN-09-1882 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gallina G, Dolcetti L, Serafini P, De Santo C, Marigo I, Colombo MP, Basso G, Brombacher F, Borrello I, Zanovello P, Bicciato S, Bronte V (2006) Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8 + T cells. J Clin Invest 116(10):2777–2790. doi:10.1172/JCI28828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang R, Cai Z, Zhang Y, Yutzy WHt, Roby KF, Roden RB (2006) CD80 in immune suppression by mouse ovarian carcinoma-associated Gr-1 + CD11b + myeloid cells. Cancer Res 66(13):6807–6815. doi:10.1158/0008-5472.CAN-05-3755 66/13/6807 [pii]

  61. Haile LA, Gamrekelashvili J, Manns MP, Korangy F, Greten TF (2010) CD49d is a new marker for distinct myeloid-derived suppressor cell subpopulations in mice. J Immunol 185(1):203–210. doi:10.4049/jimmunol.0903573

    Article  CAS  PubMed  Google Scholar 

  62. Kohanbash G, McKaveney K, Sakaki M, Ueda R, Mintz AH, Amankulor N, Fujita M, Ohlfest JR, Okada H (2013) GM-CSF promotes the immunosuppressive activity of glioma-infiltrating myeloid cells through interleukin-4 receptor-alpha. Cancer Res 73(21):6413–6423. doi:10.1158/0008-5472.CAN-12-4124

    Article  CAS  PubMed  Google Scholar 

  63. Youn JI, Gabrilovich DI (2010) The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. Eur J Immunol 40(11):2969–2975. doi:10.1002/eji.201040895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Maenhout SK, Van Lint S, Emeagi PU, Thielemans K, Aerts JL (2014) Enhanced suppressive capacity of tumor-infiltrating myeloid-derived suppressor cells compared with their peripheral counterparts. Int J Cancer 134(5):1077–1090. doi:10.1002/ijc.28449

    Article  CAS  PubMed  Google Scholar 

  65. Ostrand-Rosenberg S, Sinha P (2009) Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 182(8):4499–4506. doi:10.4049/jimmunol.0802740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Vasquez-Dunddel D, Pan F, Zeng Q, Gorbounov M, Albesiano E, Fu J, Blosser RL, Tam AJ, Bruno T, Zhang H, Pardoll D, Kim Y (2013) STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients. J Clin Invest 123(4):1580–1589. doi:10.1172/JCI60083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bronte V, Zanovello P (2005) Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 5(8):641–654. doi:10.1038/nri1668

    Article  CAS  PubMed  Google Scholar 

  68. Albeituni SH, Ding C, Yan J (2013) Hampering immune suppressors: therapeutic targeting of myeloid-derived suppressor cells in cancer. Cancer J 19(6):490–501. doi:10.1097/PPO.0000000000000006 00130404-201311000-00006 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang L, Chang EW, Wong SC, Ong SM, Chong DQ, Ling KL (2013) Increased myeloid-derived suppressor cells in gastric cancer correlate with cancer stage and plasma S100A8/A9 proinflammatory proteins. J Immunol 190(2):794–804. doi:10.4049/jimmunol.1202088

    Article  CAS  PubMed  Google Scholar 

  70. Zea AH, Rodriguez PC, Atkins MB, Hernandez C, Signoretti S, Zabaleta J, McDermott D, Quiceno D, Youmans A, O’Neill A, Mier J, Ochoa AC (2005) Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res 65(8):3044–3048. doi:10.1158/0008-5472.CAN-04-4505 65/8/3044 [pii]

    CAS  PubMed  Google Scholar 

  71. Nagaraj S, Schrum AG, Cho HI, Celis E, Gabrilovich DI (2010) Mechanism of T cell tolerance induced by myeloid-derived suppressor cells. J Immunol 184(6):3106–3116. doi:10.4049/jimmunol.0902661 jimmunol.0902661 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rodriguez PC, Quiceno DG, Zabaleta J, Ortiz B, Zea AH, Piazuelo MB, Delgado A, Correa P, Brayer J, Sotomayor EM, Antonia S, Ochoa JB, Ochoa AC (2004) Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res 64(16):5839–5849. doi:10.1158/0008-5472.CAN-04-0465 64/16/5839 [pii]

    Article  CAS  PubMed  Google Scholar 

  73. Serafini P, Mgebroff S, Noonan K, Borrello I (2008) Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res 68(13):5439–5449. doi:10.1158/0008-5472.CAN-07-6621 68/13/5439 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Filipazzi P, Valenti R, Huber V, Pilla L, Canese P, Iero M, Castelli C, Mariani L, Parmiani G, Rivoltini L (2007) Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol 25(18):2546–2553. doi:10.1200/JCO.2006.08.5829

    Article  CAS  PubMed  Google Scholar 

  75. Abad C, Nobuta H, Li J, Kasai A, Yong WH, Waschek JA (2014) Targeted STAT3 disruption in myeloid cells alters immunosuppressor cell abundance in a murine model of spontaneous medulloblastoma. J Leukoc Biol 95(2):357–367. doi:10.1189/jlb.1012531 jlb.1012531[pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Kortylewski M, Kujawski M, Wang T, Wei S, Zhang S, Pilon-Thomas S, Niu G, Kay H, Mule J, Kerr WG, Jove R, Pardoll D, Yu H (2005) Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med 11(12):1314–1321. doi:10.1038/nm1325 nm1325 [pii]

    Article  CAS  PubMed  Google Scholar 

  77. Kinjyo I, Inoue H, Hamano S, Fukuyama S, Yoshimura T, Koga K, Takaki H, Himeno K, Takaesu G, Kobayashi T, Yoshimura A (2006) Loss of SOCS3 in T helper cells resulted in reduced immune responses and hyperproduction of interleukin 10 and transforming growth factor-beta 1. J Exp Med 203(4):1021–1031. doi:10.1084/jem.20052333 jem.20052333 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yu J, Wang Y, Yan F, Li H, Ren X (2013) Response to comment on “Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer”. J Immunol 190(11):5341–5342. doi:10.4049/jimmunol.1390024 190/11/5341-a [pii]

    Article  CAS  PubMed  Google Scholar 

  79. Curti A, Pandolfi S, Valzasina B, Aluigi M, Isidori A, Ferri E, Salvestrini V, Bonanno G, Rutella S, Durelli I, Horenstein AL, Fiore F, Massaia M, Colombo MP, Baccarani M, Lemoli RM (2007) Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25- into CD25 + T regulatory cells. Blood 109(7):2871–2877. doi:10.1182/blood-2006-07-036863 blood-2006-07-036863 [pii]

    CAS  PubMed  Google Scholar 

  80. Yu J, Sun J, Wang SE, Li H, Cao S, Cong Y, Liu J, Ren X (2011) Upregulated expression of indoleamine 2, 3-dioxygenase in primary breast cancer correlates with increase of infiltrated regulatory T cells in situ and lymph node metastasis. Clin Dev Immunol 2011:469135. doi:10.1155/2011/469135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Corzo CA, Cotter MJ, Cheng P, Cheng F, Kusmartsev S, Sotomayor E, Padhya T, McCaffrey TV, McCaffrey JC, Gabrilovich DI (2009) Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol 182(9):5693–5701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bronte V, Serafini P, De Santo C, Marigo I, Tosello V, Mazzoni A, Segal DM, Staib C, Lowel M, Sutter G, Colombo MP, Zanovello P (2003) IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice. J Immunol 170(1):270–278

    Article  CAS  PubMed  Google Scholar 

  83. Xia Y, Roman LJ, Masters BS, Zweier JL (1998) Inducible nitric-oxide synthase generates superoxide from the reductase domain. J Biol Chem 273(35):22635–22639

    Article  CAS  PubMed  Google Scholar 

  84. Kusmartsev S, Nefedova Y, Yoder D, Gabrilovich DI (2004) Antigen-specific inhibition of CD8 + T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol 172(2):989–999

    Article  CAS  PubMed  Google Scholar 

  85. Nefedova Y, Fishman M, Sherman S, Wang X, Beg AA, Gabrilovich DI (2007) Mechanism of all-trans retinoic acid effect on tumor-associated myeloid-derived suppressor cells. Cancer Res 67(22):11021–11028

    Article  CAS  PubMed  Google Scholar 

  86. Ando T, Mimura K, Johansson CC, Hanson MG, Mougiakakos D, Larsson C, Martins da Palma T, Sakurai D, Norell H, Li M, Nishimura MI, Kiessling R (2008) Transduction with the antioxidant enzyme catalase protects human T cells against oxidative stress. J Immunol 181(12):8382–8390 181/12/8382 [pii]

    Article  CAS  PubMed  Google Scholar 

  87. Hildeman DA, Mitchell T, Aronow B, Wojciechowski S, Kappler J, Marrack P (2003) Control of Bcl-2 expression by reactive oxygen species. Proc Natl Acad Sci USA 100(25):15035–15040. doi:10.1073/pnas.1936213100 1936213100 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kujawski M, Kortylewski M, Lee H, Herrmann A, Kay H, Yu H (2008) Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. J Clin Invest 118(10):3367–3377. doi:10.1172/JCI35213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yang L, Huang J, Ren X, Gorska AE, Chytil A, Aakre M, Carbone DP, Matrisian LM, Richmond A, Lin PC, Moses HL (2008) Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1 + CD11b + myeloid cells that promote metastasis. Cancer Cell 13(1):23–35. doi:10.1016/j.ccr.2007.12.004 S1535-6108(07)00373-X [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ahn GO, Brown JM (2008) Matrix metalloproteinase-9 is required for tumor vasculogenesis but not for angiogenesis: role of bone marrow-derived myelomonocytic cells. Cancer Cell 13(3):193–205. doi:10.1016/j.ccr.2007.11.032 S1535-6108(08)00002-0 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhang W, Zhang C, Li W, Deng J, Herrmann A, Priceman SJ, Liang W, Shen S, Pal SK, Hoon DS, Yu H (2015) CD8 + T-cell immunosurveillance constrains lymphoid premetastatic myeloid cell accumulation. Eur J Immunol 45(1):71–81. doi:10.1002/eji.201444467

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Auphan-Anezin N, Schmitt-Verhulst AM (2015) Silence STAT3 in the procancer niche… and activate CD8 + T cells to kill premetastatic myeloid intruders. Eur J Immunol 45(1):44–48. doi:10.1002/eji.201445300

    Article  CAS  PubMed  Google Scholar 

  93. Hiratsuka S, Watanabe A, Aburatani H, Maru Y (2006) Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 8(12):1369–1375. doi:10.1038/ncb1507 ncb1507 [pii]

    Article  CAS  PubMed  Google Scholar 

  94. Kaplan RN, Rafii S, Lyden D (2006) Preparing the “soil”: the premetastatic niche. Cancer Res 66(23):11089–11093. doi:10.1158/0008-5472.CAN-06-2407 66/23/11089 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, Zhu Z, Hicklin D, Wu Y, Port JL, Altorki N, Port ER, Ruggero D, Shmelkov SV, Jensen KK, Rafii S, Lyden D (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438(7069):820–827. doi:10.1038/nature04186 nature04186 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yan HH, Pickup M, Pang Y, Gorska AE, Li Z, Chytil A, Geng Y, Gray JW, Moses HL, Yang L (2010) Gr-1 + CD11b + myeloid cells tip the balance of immune protection to tumor promotion in the premetastatic lung. Cancer Res 70(15):6139–6149. doi:10.1158/0008-5472.CAN-10-0706 0008-5472.CAN-10-0706 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ (2009) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 58(1):49–59. doi:10.1007/s00262-008-0523-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Draghiciu O, Lubbers J, Nijman HW, Daemen T (2015) Myeloid derived suppressor cells-An overview of combat strategies to increase immunotherapy efficacy. Oncoimmunology 4(1):e954829. doi:10.4161/21624011.2014.954829 954829 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Bill MA, Fuchs JR, Li C, Yui J, Bakan C, Benson DM Jr, Schwartz EB, Abdelhamid D, Lin J, Hoyt DG, Fossey SL, Young GS, Carson WE 3rd, Li PK, Lesinski GB (2010) The small molecule curcumin analog FLLL32 induces apoptosis in melanoma cells via STAT3 inhibition and retains the cellular response to cytokines with anti-tumor activity. Mol Cancer 9:165. doi:10.1186/1476-4598-9-165 1476-4598-9-165 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Lu P, Yu B, Xu J (2012) Cucurbitacin B regulates immature myeloid cell differentiation and enhances antitumor immunity in patients with lung cancer. Cancer Biother Radiopharm 27(8):495–503. doi:10.1089/cbr.2012.1219

    Article  CAS  PubMed  Google Scholar 

  101. Tu SP, Jin H, Shi JD, Zhu LM, Suo Y, Lu G, Liu A, Wang TC, Yang CS (2012) Curcumin induces the differentiation of myeloid-derived suppressor cells and inhibits their interaction with cancer cells and related tumor growth. Cancer Prev Res (Phila) 5(2):205–215. doi:10.1158/1940-6207.CAPR-11-0247 1940-6207.CAPR-11-0247 [pii]

    Article  CAS  Google Scholar 

  102. Lin L, Deangelis S, Foust E, Fuchs J, Li C, Li PK, Schwartz EB, Lesinski GB, Benson D, Lu J, Hoyt D, Lin J (2010) A novel small molecule inhibits STAT3 phosphorylation and DNA binding activity and exhibits potent growth suppressive activity in human cancer cells. Mol Cancer 9:217. doi:10.1186/1476-4598-9-217 1476-4598-9-217 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhou J, Wu J, Chen X, Fortenbery N, Eksioglu E, Kodumudi KN, Pk EB, Dong J, Djeu JY, Wei S (2011) Icariin and its derivative, ICT, exert anti-inflammatory, anti-tumor effects, and modulate myeloid derived suppressive cells (MDSCs) functions. Int Immunopharmacol 11(7):890–898. doi:10.1016/j.intimp.2011.01.007 S1567-5769(11)00027-0 [pii]

    Article  CAS  PubMed  Google Scholar 

  104. Ko JS, Rayman P, Ireland J, Swaidani S, Li G, Bunting KD, Rini B, Finke JH, Cohen PA (2010) Direct and differential suppression of myeloid-derived suppressor cell subsets by sunitinib is compartmentally constrained. Cancer Res 70(9):3526–3536. doi:10.1158/0008-5472.CAN-09-3278 0008-5472.CAN-09-3278 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ko JS, Zea AH, Rini BI, Ireland JL, Elson P, Cohen P, Golshayan A, Rayman PA, Wood L, Garcia J, Dreicer R, Bukowski R, Finke JH (2009) Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res 15(6):2148–2157. doi:10.1158/1078-0432.CCR-08-1332 1078-0432.CCR-08-1332 [pii]

    Article  CAS  PubMed  Google Scholar 

  106. Kodera Y, Katanasaka Y, Kitamura Y, Tsuda H, Nishio K, Tamura T, Koizumi F (2011) Sunitinib inhibits lymphatic endothelial cell functions and lymph node metastasis in a breast cancer model through inhibition of vascular endothelial growth factor receptor 3. Breast Cancer Res 13(3):R66. doi:10.1186/bcr2903 bcr2903 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Finke JH, Rini B, Ireland J, Rayman P, Richmond A, Golshayan A, Wood L, Elson P, Garcia J, Dreicer R, Bukowski R (2008) Sunitinib reverses type-1 immune suppression and decreases T-regulatory cells in renal cell carcinoma patients. Clin Cancer Res 14(20):6674–6682

    Article  CAS  PubMed  Google Scholar 

  108. Holash J, Davis S, Papadopoulos N, Croll SD, Ho L, Russell M, Boland P, Leidich R, Hylton D, Burova E, Ioffe E, Huang T, Radziejewski C, Bailey K, Fandl JP, Daly T, Wiegand SJ, Yancopoulos GD, Rudge JS (2002) VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci USA 99(17):11393–11398. doi:10.1073/pnas.172398299 172398299 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Fricke I, Mirza N, Dupont J, Lockhart C, Jackson A, Lee JH, Sosman JA, Gabrilovich DI (2007) Vascular endothelial growth factor-trap overcomes defects in dendritic cell differentiation but does not improve antigen-specific immune responses. Clin Cancer Res 13(16):4840–4848

    Article  CAS  PubMed  Google Scholar 

  110. Kusmartsev S, Eruslanov E, Kubler H, Tseng T, Sakai Y, Su Z, Kaliberov S, Heiser A, Rosser C, Dahm P, Siemann D, Vieweg J (2008) Oxidative stress regulates expression of VEGFR1 in myeloid cells: link to tumor-induced immune suppression in renal cell carcinoma. J Immunol 181(1):346–353 181/1/346 [pii]

    Article  CAS  PubMed  Google Scholar 

  111. Rodriguez PC, Ernstoff MS, Hernandez C, Atkins M, Zabaleta J, Sierra R, Ochoa AC (2009) Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res 69(4):1553–1560. doi:10.1158/0008-5472.CAN-08-1921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sumida K, Wakita D, Narita Y, Masuko K, Terada S, Watanabe K, Satoh T, Kitamura H, Nishimura T (2012) Anti-IL-6 receptor mAb eliminates myeloid-derived suppressor cells and inhibits tumor growth by enhancing T-cell responses. Eur J Immunol 42(8):2060–2072. doi:10.1002/eji.201142335

    Article  CAS  PubMed  Google Scholar 

  113. Liby KT, Yore MM, Sporn MB (2007) Triterpenoids and rexinoids as multifunctional agents for the prevention and treatment of cancer. Nat Rev Cancer 7(5):357–369. doi:10.1038/nrc2129 nrc2129 [pii]

    Article  CAS  PubMed  Google Scholar 

  114. Konopleva M, Zhang W, Shi YX, McQueen T, Tsao T, Abdelrahim M, Munsell MF, Johansen M, Yu D, Madden T, Safe SH, Hung MC, Andreeff M (2006) Synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid induces growth arrest in HER2-overexpressing breast cancer cells. Mol Cancer Ther 5(2):317–328. doi:10.1158/1535-7163.MCT-05-0350 5/2/317 [pii]

    Article  CAS  PubMed  Google Scholar 

  115. Ahmad R, Raina D, Meyer C, Kufe D (2008) Triterpenoid CDDO-methyl ester inhibits the Janus-activated kinase-1 (JAK1) signal transducer and activator of transcription-3 (STAT3) pathway by direct inhibition of JAK1 and STAT3. Cancer Res 68(8):2920–2926. doi:10.1158/0008-5472.CAN-07-3036 68/8/2920 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ozao-Choy J, Ma G, Kao J, Wang GX, Meseck M, Sung M, Schwartz M, Divino CM, Pan PY, Chen SH (2009) The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Res 69(6):2514–2522. doi:10.1158/0008-5472.CAN-08-4709 0008-5472.CAN-08-4709 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kerkar SP, Goldszmid RS, Muranski P, Chinnasamy D, Yu Z, Reger RN, Leonardi AJ, Morgan RA, Wang E, Marincola FM, Trinchieri G, Rosenberg SA, Restifo NP (2011) IL-12 triggers a programmatic change in dysfunctional myeloid-derived cells within mouse tumors. J Clin Invest 121(12):4746–4757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Liechtenstein T, Perez-Janices N, Blanco-Luquin I, Goyvaerts C, Schwarze J, Dufait I, Lanna A, Ridder M, Guerrero-Setas D, Breckpot K, Escors D (2014) Anti-melanoma vaccines engineered to simultaneously modulate cytokine priming and silence PD-L1 characterized using myeloid-derived suppressor cells as a readout of therapeutic efficacy. Oncoimmunology 3(7):e945378. doi:10.4161/21624011.2014.945378 945378 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  119. Zoglmeier C, Bauer H, Norenberg D, Wedekind G, Bittner P, Sandholzer N, Rapp M, Anz D, Endres S, Bourquin C (2011) CpG blocks immunosuppression by myeloid-derived suppressor cells in tumor-bearing mice. Clin Cancer Res 17(7):1765–1775. doi:10.1158/1078-0432.CCR-10-2672 1078-0432.CCR-10-2672 [pii]

    Article  CAS  PubMed  Google Scholar 

  120. Shirota Y, Shirota H, Klinman DM (2012) Intratumoral injection of CpG oligonucleotides induces the differentiation and reduces the immunosuppressive activity of myeloid-derived suppressor cells. J Immunol 188(4):1592–1599. doi:10.4049/jimmunol.1101304 jimmunol.1101304 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kortylewski M, Swiderski P, Herrmann A, Wang L, Kowolik C, Kujawski M, Lee H, Scuto A, Liu Y, Yang C, Deng J, Soifer HS, Raubitschek A, Forman S, Rossi JJ, Pardoll DM, Jove R, Yu H (2009) In vivo delivery of siRNA to immune cells by conjugation to a TLR9 agonist enhances antitumor immune responses. Nat Biotechnol 27(10):925–932. doi:10.1038/nbt.1564 nbt.1564 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhang Q, Hossain DM, Nechaev S, Kozlowska A, Zhang W, Liu Y, Kowolik CM, Swiderski P, Rossi JJ, Forman S, Pal S, Bhatia R, Raubitschek A, Yu H, Kortylewski M (2013) TLR9-mediated siRNA delivery for targeting of normal and malignant human hematopoietic cells in vivo. Blood 121(8):1304–1315. doi:10.1182/blood-2012-07-442590 blood-2012-07-442590 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hossain DM, Pal SK, Moreira D, Duttagupta P, Zhang Q, Won H, Jones J, D’Apuzzo M, Forman S, Kortylewski M (2015) TLR9-Targeted STAT3 Silencing Abrogates Immunosuppressive Activity of Myeloid-Derived Suppressor Cells from Prostate Cancer Patients. Clin Cancer Res 21(16):3771–3782. doi:10.1158/1078-0432.CCR-14-3145 1078-0432.CCR-14-3145 [pii]

    Article  CAS  PubMed  Google Scholar 

  124. Goyvaerts C, De Groeve K, Dingemans J, Van Lint S, Robays L, Heirman C, Reiser J, Zhang XY, Thielemans K, De Baetselier P, Raes G, Breckpot K (2012) Development of the Nanobody display technology to target lentiviral vectors to antigen-presenting cells. Gene Ther 19(12):1133–1140. doi:10.1038/gt.2011.206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Goyvaerts C, Dingemans J, De Groeve K, Heirman C, Van Gulck E, Vanham G, De Baetselier P, Thielemans K, Raes G, Breckpot K (2013) Targeting of Human Antigen-Presenting Cell Subsets. J Virol 87(20):11304–11308. doi:10.1128/JVI.01498-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Amoozgar Z, Goldberg MS (2015) Targeting myeloid cells using nanoparticles to improve cancer immunotherapy. Adv Drug Deliv Rev 30(91):38–51

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karine Breckpot .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Breckpot, K. (2016). Signal Transducer and Activation of Transcription 3: A Master Regulator of Myeloid-Derived Suppressor Cells. In: Myeloid-Derived Suppressor Cells and Cancer. SpringerBriefs in Immunology. Springer, Cham. https://doi.org/10.1007/978-3-319-26821-7_6

Download citation

Publish with us

Policies and ethics