Skip to main content

Fluorescent Indicators of Membrane Permeabilization Due to Electroporation

  • Living reference work entry
  • First Online:
Handbook of Electroporation

Abstract

The plasma membrane represents a barrier between a cell and its surroundings. The membrane’s selective transport enables the cell to maintain solute concentrations different from the outside medium. However, in the process of electroporation, the function of plasma membrane barrier and transport selectivity is at least partially lost and the molecules that are impermeant to intact membrane can enter into the cell’s cytoplasm. The uptake of such molecules can be indicative for plasma membrane permeabilization. Most commonly used indicators for this purpose are fluorescent molecules: their cellular uptake can be detected by fluorescence microscopy as well as by methods suitable to analyze bulk cells, such as spectrofluorometers, plate readers, and flow cytometers. The use of fluorescent indicators is a simple, noninvasive, highly sensitive, and safe method to monitor the extent of membrane permeabilization, allowing real-time dynamic imaging or evaluating response of an average response to electric pulse exposure, depending on the mode of detection used. There are many fluorescent indicators that are used in electroporation experiments. Among them, the most widely used fluorophore is propidium iodide: because it significantly increases its fluorescence by binding to nucleic acids, it enables microscopic observation of rapid transport across permeabilized membrane without any washing. In addition to nucleic acid binding dyes (e.g., PI, YO-PRO®-1 Iodide), there are also other fluorescent indicators of membrane permeabilization: nonbinding, low molecular weight (such as lucifer yellow), and large indicators (such as dextrans and quantum dots) available on the market. With the use of different fluorescent indicators and detection methods, scientists can gain insight on different perspectives of the electroporation phenomenon (e.g., asymmetric uptake of molecules, the effects of pulse parameters on membrane permeabilization, the size of pores, and response variability in cells).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bowman AM, Nesin OM, Pakhomova ON, Pakhomov AG (2010) Analysis of plasma membrane integrity by fluorescent detection of Tl + Uptake. J Membr Biol 236:15–26. doi:10.1007/s00232-010-9269-y

    Article  Google Scholar 

  • Breger J, Delehanty JB, Medintz IL (2015) Continuing progress toward controlled intracellular delivery of semiconductor quantum dots. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7:131–151. doi:10.1002/wnan.1281

    Article  Google Scholar 

  • Canatella PJ, Karr JF, Petros JA, Prausnitz MR (2001) Quantitative study of electroporation-mediated molecular uptake and cell viability. Biophys J 80:755–764

    Article  Google Scholar 

  • Čorović S, Zupanic A, Kranjc S et al (2010) The influence of skeletal muscle anisotropy on electroporation: in vivo study and numerical modeling. Med Biol Eng Comput 48:637–648. doi:10.1007/s11517-010-0614-1

    Article  Google Scholar 

  • Drummen GPC (2012) Fluorescent probes and fluorescence (Microscopy) techniques – Illuminating biological and biomedical research. Molecules 17:14067–14090. doi:10.3390/molecules171214067

    Article  Google Scholar 

  • Fernández-Suárez M, Ting AY (2008) Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Biol 9:929–943. doi:10.1038/nrm2531

    Article  Google Scholar 

  • Golzio M, Teissié J, Rols M-P (2002) Direct visualization at the single-cell level of electrically mediated gene delivery. Proc Natl Acad Sci 99:1292–1297. doi:10.1073/pnas.022646499

    Article  Google Scholar 

  • Khine M, Lau A, Ionescu-Zanetti C et al (2005) A single cell electroporation chip. Lab Chip 5:38–43. doi:10.1039/b408352k

    Article  Google Scholar 

  • Mair F, Hartmann FJ, Mrdjen D et al (2016) The end of gating? An introduction to automated analysis of high dimensional cytometry data. Eur J Immunol 46:34–43. doi:10.1002/eji.201545774

    Article  Google Scholar 

  • Marjanovič I, Kandušer M, Miklavčič D et al (2014) Comparison of flow cytometry, fluorescence microscopy and spectrofluorometry for analysis of gene electrotransfer efficiency. J Membr Biol 247:1259–1267. doi:10.1007/s00232-014-9714-4

    Article  Google Scholar 

  • Napotnik TB, Reberšek M, Kotnik T et al (2010) Electropermeabilization of endocytotic vesicles in B16 F1 mouse melanoma cells. Med Biol Eng Comput 48:407–413. doi:10.1007/s11517-010-0599-9

    Article  Google Scholar 

  • Nesin OM, Pakhomova ON, Xiao S, Pakhomov AG (2011) Manipulation of cell volume and membrane pore comparison following single cell permeabilization with 60- and 600-ns electric pulses. Biochim Biophys Acta Biomembr 1808:792–801. doi:10.1016/j.bbamem.2010.12.012

    Article  Google Scholar 

  • Pakhomov AG, Bowman AM, Ibey BL et al (2009) Lipid nanopores can form a stable, ion channel-like conduction pathway in cell membrane. Biochem Biophys Res Commun 385:181–186. doi:10.1016/j.bbrc.2009.05.035

    Article  Google Scholar 

  • Puc M, Kotnik T, Mir LM, Miklavcic D (2003) Quantitative model of small molecules uptake after in vitro cell electropermeabilization. Bioelectrochemistry Amst Neth 60:1–10

    Article  Google Scholar 

  • Pucihar G, Krmelj J, Reberšek M et al (2011) Equivalent pulse parameters for electroporation. IEEE Trans Biomed Eng 58:3279–3288. doi:10.1109/TBME.2011.2167232

    Article  Google Scholar 

  • Rosazza C, Deschout H, Buntz A et al (2016a) Endocytosis and endosomal trafficking of DNA after gene electrotransfer in vitro. Mol Ther Nucleic Acids 5:e286. doi:10.1038/mtna.2015.59

    Article  Google Scholar 

  • Rosazza C, Meglic SH, Zumbusch A et al (2016b) Gene electrotransfer: a mechanistic perspective. Curr Gene Ther 16:98–129

    Article  Google Scholar 

  • Santra TS, Chang H-Y, Wang P-C, Tseng F-G (2014) Impact of pulse duration on localized single-cell nano-electroporation. Analyst 139:6249–6258. doi:10.1039/c4an01050g

    Article  Google Scholar 

  • Sun C, Cao Z, Wu M, Lu C (2014) Intracellular tracking of single native molecules with electroporation-delivered quantum dots. Anal Chem 86:11403–11409. doi:10.1021/ac503363m

    Article  Google Scholar 

  • Thomas JA (2015) Optical imaging probes for biomolecules: an introductory perspective. Chem Soc Rev 44:4494–4500. doi:10.1039/C5CS00070J

    Article  Google Scholar 

  • Vermes I, Haanen C, Steffens-Nakken H, Reutellingsperger C (1995) A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 184:39–51. doi:10.1016/0022-1759(95)00072-I

    Article  Google Scholar 

  • Vernier PT, Sun Y, Marcu L et al (2004) Nanoelectropulse-induced phosphatidylserine translocation. Biophys J 86:4040–4048. doi:10.1529/biophysj.103.037945

    Article  Google Scholar 

  • Vernier PT, Sun Y, Gundersen MA (2006) Nanoelectropulse-driven membrane perturbation and small molecule permeabilization. BMC Cell Biol 7:37. doi:10.1186/1471-2121-7-37

    Article  Google Scholar 

  • Yumura S, Matsuzaki R, Kitanishi-Yumura T (1995) Introduction of macromolecules into living Dictyostelium cells by electroporation. Cell Struct Funct 20:185–190

    Article  Google Scholar 

  • Zorec B, Jelenc J, Miklavčič D, Pavšelj N (2015) Ultrasound and electric pulses for transdermal drug delivery enhancement: Ex vivo assessment of methods with in vivo oriented experimental protocols. Int J Pharm 490:65–73. doi:10.1016/j.ijpharm.2015.05.035

    Article  Google Scholar 

Download references

Acknowledgment

The work was supported by the Slovenian Research Agency (ARRS), grant P2-0249. It was conducted in the scope of LEA EBAM: the European Laboratory of Pulsed Electric Fields Applications (2011–2018) and COST Action TD1104: European network for development of electroporation-based technologies and treatments (EP4Bio2Med) (2011–2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tina Batista Napotnik .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Napotnik, T.B. (2016). Fluorescent Indicators of Membrane Permeabilization Due to Electroporation. In: Miklavcic, D. (eds) Handbook of Electroporation. Springer, Cham. https://doi.org/10.1007/978-3-319-26779-1_133-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26779-1_133-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-26779-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics