Skip to main content

Agroecological Principles from a Bibliographic Analysis of the Term Agroecology

  • Chapter
  • First Online:
Sustainable Agriculture Reviews

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 19))

Abstract

Agricultural developments over the previous half-century have highly increased food, feed and fiber production. Yet, global food output and distribution still falls short of feeding the world with unintended harm to the environment and society. Agriculture requires new approaches that meet the challenges of sustainable and equitable food production. One prevailing alternative, agroecology, is an approach that promotes environmental conservation, ecosystem health and social equality in the global food system. However, the field of agroecology remains disjointed by a number of working definitions and conflicting agendas. Lack of a clear definition of the term can lead to misuse or overgeneralization that hinders effective dialog, collaboration, and development of the discipline.

We conducted a literature review to determine trends in current usage of the term ‘agroecology’ and to offer an approach to developing a unified agroecological framework. Our findings suggests that diverse agendas in agroecology can be unified through the fundamental principles of systems thinking, resilience, biodiversity, and production. We found that the agroecological literature continues to grow at a rapid rate. Agroecological practices are discussed more often than principles, though almost half of publications already use the term systems approach. Biodiversity and resilience are not as well represented in the literature, though resilience is increasingly used in recent papers. The diverse perspectives and agendas encompassed by agroecology are a strength of the discipline when communicated within a clear and open dialog. Improving cohesion among agroecologists through a focus on defining foundational principles will broaden the credibility of agroecology in science and public opinion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altieri MA (1987) Agroecology: the scientific basis of alternative agriculture. Westview Press, Boulder

    Google Scholar 

  • Altieri MA (1999) The ecological role of biodiversity in agroecosystems. Agr Ecosyst Environ 74:19–31

    Article  Google Scholar 

  • Altieri MA (2002) Agroecology: the science of natural resource management for poor farmers in marginal environments. Agr Ecosyst Environ 93(1-3):1–24

    Article  Google Scholar 

  • Altieri MA (2012) The scaling up of agroecology: spreading the hope for food sovereignty and resiliency. Position paper from RIO + 20 of the Sociedad Cientifica Latinoamericana de Agroecologia, http://agroeco.org/socla/?page_id=240

  • Altieri MA et al (1999) The greening of the “barrios”: Urban agriculture for food security in Cuba. Agr Hum Values 16(2):131–140

    Article  Google Scholar 

  • Anderson LS, Sinclair FL (1993) Ecological interactions in agroforestry systems. Agrofor Abstr 6(2):56–91

    Google Scholar 

  • Arshad MA, Martin S (2002) Identifying critical limits for soil quality indicators in agro-ecosystems. Agr Ecosyst Environ 88(2):153–160

    Article  Google Scholar 

  • Bawden RJ (1991) Systems thinking and practice in agriculture. J Dairy Sci 74:2362–2373

    Article  Google Scholar 

  • Brandt K, Leifert C, Sanderson R, Seal CJ (2011) Agroecosystem management and nutritional quality of plant foods: the case of organic fruits and vegetables. Crit Rev Plant Sci 30:177–197

    Article  CAS  Google Scholar 

  • Brussaard L, de Ruiter PC, Brown GG (2007) Soil biodiversity for agricultural sustainability. Agr Ecosyst Environ 121:233–244

    Article  Google Scholar 

  • Cassidy ES, West PC, Gerber JS, Foley JA (2013) Redefining agricultural yields: from tonnes to people nourished per hectare. Environ Res Lett 8. doi:10.1088/1748-9326/8/3/034015

    Google Scholar 

  • Cassman KG (1999) Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proc Natl Acad Sci U S A 96(11):5952–5959

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cassman KG, Dobermann A, Walters DT (2002) Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio 31(2):132–140

    Article  PubMed  Google Scholar 

  • Chazdon RL et al (2009) Beyond reserves: a research agenda for conserving biodiversity in human-modified tropical landscapes. Biotropica 41(2):142–153

    Article  Google Scholar 

  • Conford P (2001) The origins of the organic movement. Floris Books, Edinburgh

    Google Scholar 

  • Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    Article  CAS  Google Scholar 

  • Dalgaard T, Hutchings NJ, Porter JR (2003) Agroecology, scaling and interdisciplinarity. Agr Ecosyst Environ 100(1–3):39–51

    Article  Google Scholar 

  • David C, Wezel A (2012) Agroecology and the food system. In: Lichtfouse E (ed) Agroecology and strategies for climate change, vol 8, Sustain Agr Rev. Springer, Dordrecht, pp 17–34

    Google Scholar 

  • Davis AS, Hill JD, Chase CA, Johanns AM, Liebman M (2012) Increasing cropping system diversity balances productivity, profitability and environmental health. Plos One 7(10). doi:10.1371/journal.pone.0047149

    Google Scholar 

  • Deng J, Zuo W, Wang Z, Fan Z, Ji M, Wang G, Ran J, Zhao C, Liu J, Niklas KJ, Hammond ST, Brown JH (2012) Insights into plant size-density relationships from models and agricultural crops. Proc Natl Acad Sci U S A 109(22):8600–8605

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Doré T, Makowski D, Malézieux E, Munier-Jolain N, Tchamitchian M, Tittonell P (2011) Facing up to the paradigm of ecological intensification in agronomy: revisiting methods, concepts and knowledge. Eur J Agron 34(4):197–210

    Article  Google Scholar 

  • Drinkwater LE (2002) Cropping systems research: reconsidering agricultural experimental approaches. HortTechnology 12:355–361

    Google Scholar 

  • Drinkwater LE, Letourneau DK, Workneh F, van Bruggen AHC, Shennan C (1995) Fundamental differences between conventional and organic tomato agroecosystems in California. Ecol Appl 5(4):1098–1112

    Article  Google Scholar 

  • Drinkwater LE, Wagoner P, Sarrantonio M (1998) Legume based cropping systems have reduced carbon and nitrogen losses. Nature 396:262–265

    Article  CAS  Google Scholar 

  • Ferguson RS, Lovell ST (2014) Permaculture for agroecology: design, movement, practice, and worldview. A review. Agron Sustain Dev 34(2):251–274

    Article  Google Scholar 

  • Fischer J, Lindenmayer DB, Manning AD (2006) Biodiversity, ecosystem function, and resilience: ten guiding principles for commodity production landscapes. Front Ecol Environ 4(2):80–86

    Article  Google Scholar 

  • Francis CA, Porter P (2011) Ecology in sustainable agriculture practices and systems. Crit Rev Plant Sci 30:64–73

    Article  Google Scholar 

  • Franzluebbers AJ, Sawchik J, Taboadac MA (2014) Agronomic and environmental impacts of pasture–crop rotations in temperate north and south america. Agr Ecosyst Environ 190:18–26

    Article  Google Scholar 

  • Fuhrer J (2003) Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agr Ecosyst Environ 97(1–3):1–20

    Article  CAS  Google Scholar 

  • Gliessman SR (2007) Agroecology: the ecology of sustainable food systems. CRC Press, Boca Raton

    Google Scholar 

  • Glover JD, Reganold JP, Bell LW, Borevitz J, Brummer EC et al (2010) Increased food and ecosystem security via perennial grains. Science 328:1638–1639

    Article  CAS  PubMed  Google Scholar 

  • Hahlbrock K (2007) Feeding the planet: environmental protection through sustainable agriculture. Haus Publishers, London

    Google Scholar 

  • Howard A (1940) An agricultural testament. Oxford University Press, Oxford

    Google Scholar 

  • Howard PH (2009) Visualizing consolidation in the global seed industry: 1996–2008. Sustainability 1(4):1266–1287

    Article  Google Scholar 

  • Hufnagl-Eichner S, Wolf SA, Drinkwater LE (2011) Assessing social-ecological coupling: agriculture and hypoxia in the Gulf of Mexico. Global Environ Chang 21:530–539

    Article  Google Scholar 

  • Huxley PA (ed) (1983) Plant research and agroforestry. International Council for Research in Agroforestry, Nairobi

    Google Scholar 

  • Jackson LE (1997) Ecology in agriculture. Academic, San Diego

    Google Scholar 

  • Kleijn D, Sutherland WJ (2003) How effective are European agri-environment schemes in conserving and promoting biodiversity? J Appl Ecol 40(6):947–969

    Article  Google Scholar 

  • Lemaire G, Franzluebbers A, de Faccio Carvalhoc PC, Dedieud B (2014) Integrated crop–livestock systems: strategies to achieve synergy. Agr Ecosyst Environ 190:4–8

    Article  Google Scholar 

  • Letourneau DK, Goldstein B (2001) Pest damage and arthropod community structure in organic vs. conventional tomato production in California. J Appl Ecol 38:557–570

    Article  Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology. Ecology 73(6):1943–1967

    Article  Google Scholar 

  • Lockeretz W, Shearer G, Johl DH (1981) Organic farming in the corn belt. Science 211:540–547

    Article  CAS  PubMed  Google Scholar 

  • Loomis RS, Connor DJ (1992) Crop ecology: productivity and management in agricultural systems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lundquist EJ, Scow KM, Jackson LE, Uesugi SL, Johnson CR (1999) Rapid response of soil microbial communities from conventional, low input, and organic farming systems to a wet/dry cycle. Soil Biol Biochem 31(12):1661–1675

    Article  CAS  Google Scholar 

  • Mäder P, Fliessbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697

    Article  PubMed  Google Scholar 

  • Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277(5325):504–509

    Article  CAS  PubMed  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press, Washington DC

    Google Scholar 

  • National Research Council (2010) Toward sustainable agricultural systems in the 21st century. The National Academies Press, Washington, DC

    Google Scholar 

  • Northbourne WECJ (1940) Look to the land. Dent, London

    Google Scholar 

  • Oenema O, Kros H, De Vries W (2003) Approaches and uncertainties in nutrient budgets: Implications for nutrient management and environmental policies. Eur J Agron 20(1-2):3–16

    Article  Google Scholar 

  • Okey BW (1996) Systems approaches and properties, and agroecosystem health. J Environ Manage 48(2):187–199

    Article  Google Scholar 

  • Perfecto I, Vandermeer J (2008) Biodiversity conservation in tropical agroecosystems: a new conservation paradigm. Ann NY Acad Sci 1134:173–200

    Article  PubMed  Google Scholar 

  • Perfecto I, Vandermeer J, Wright A (2009) Nature’s matrix: linking agriculture, conservation, and food sovereignty. Earthscan, London

    Google Scholar 

  • Phelan PL (2009) Ecology-based agriculture and the next green revolution: is modern agriculture exempt from the laws of ecology? In: Bohlen PJ, House G (eds) Sustainable agroecosystem management: integrating ecology, economics, and society. CRC Press, Boca Raton, pp 97–135

    Chapter  Google Scholar 

  • Popkin BM (2011) Contemporary nutritional transition: determinants of diet and its impact on body composition. Proc Nutr Soc 70:82–91

    Article  PubMed Central  PubMed  Google Scholar 

  • Popkin BM, Adair LS, Ng SW (2012) Global nutrition transition and the pandemic of obesity in developing countries. Nutr Rev 70:3–21

    Article  PubMed Central  PubMed  Google Scholar 

  • Pretty J (2008) Agricultural sustainability concepts, principles and evidence. Philos T R Soc B 363(1491):447–465

    Article  Google Scholar 

  • Ratnadass A, Fernandes P, Avelino J, Habib R (2012) Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: A review. Agron Sustain Dev 32:273–303

    Article  Google Scholar 

  • Reeve JR, Carpenter-Boggs L, Sehmsdorf H (2011) Sustainable agriculture: a case study of a small Lopez island farm. Agr Syst 104:572–579

    Article  Google Scholar 

  • Reganold JP, Elliot LF, Unger YL (1987) Long-term effects of organic and conventional farming on soil erosion. Nature 330:370–372

    Article  Google Scholar 

  • Reganold JP, Palmer AS, Lockhart JC, Macgregor AN (1993) Soil quality and financial performance of biodynamic and conventional farms in New Zealand. Science 260:344–349

    Article  CAS  PubMed  Google Scholar 

  • Reganold JP, Glover JD, Andrews PK, Hinman HR (2001) Sustainability of three apple production systems. Nature 410:926–930

    Article  CAS  PubMed  Google Scholar 

  • Reganold JP, Andrews PK, Reeve JR, Carpenter-Boggs L, Schadt CW et al (2010) Enhanced fruit quality and soil functional gene abundance and diversity on organic strawberry farms. Plos One 5, e12346

    Article  PubMed Central  PubMed  Google Scholar 

  • Reijntjes C, Haverkort B, Waters-Bayer A (1992) Farming for the future: an introduction to low-external-input and sustainable agriculture. Macmillan, Netherlands

    Google Scholar 

  • Robertson GP, Allen VG, Boody G, Boose ER, Creamer NG et al (2008) Long-term agricultural research: a research, education, and extension imperative. BioScience 58(7):640–645

    Article  Google Scholar 

  • Rosegrant MW, Cline SA (2003) Global food security: challenges and policies. Science 302(5652):1917–1919

    Article  CAS  PubMed  Google Scholar 

  • Rosset PM, Altieri MA (1997) Agroecology versus input substitution: a fundamental contradiction of sustainable agriculture. Soc Nat Resour 10(3):283–295

    Article  Google Scholar 

  • Rosset PM, Sosa BM, Jaime AMR, Lozano DRA (2011) The Campesino-to-Campesino agroecology movement of ANAP in Cuba: social process methodology in the construction of sustainable peasant agriculture and food sovereignty. J Peasant Stud 38(1):161–191

    Article  PubMed  Google Scholar 

  • Sabatier R, Wiegand K, Meyer K (2013) Production robustness of a cacao agroecosystem: effects of two contrasting types of management strategies. Plos One 8(12), e80352

    Article  PubMed Central  PubMed  Google Scholar 

  • Schmidhuber J, Tubiello FN (2007) Global food security under climate change. Proc Natl Acad Sci U S A 104(50):19703–19708

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schramski JR, Rutz ZJ, Gattie DK, Li K (2011) Trophically balanced sustainable agriculture. Ecol Econ 72:88–96

    Article  Google Scholar 

  • Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176

    Article  Google Scholar 

  • Shepard M (2013) Restoration agriculture. Acres U.S.A, Austin

    Google Scholar 

  • Smith RG, Atwood LW, Warren ND (2014) Increased productivity of a cover crop mixture is not associated with enhanced agroecosystem services. Plos One 9(5), e97351

    Article  PubMed Central  PubMed  Google Scholar 

  • Snapp S, Pound B (2008) Agricultural systems: agroecology and rural innovation for development. Academic, London

    Google Scholar 

  • Steiner R (1924) Agriculture: a course of eight lectures. In: Schulze ED, Mooney HA (eds) Biodiversity and ecosystem function. Bio-dynamic Agricultural Association, London

    Google Scholar 

  • Swift MJ, Anderson JM (1994) Chapter 2: biodiversity and ecosystem function in agricultural systems. Springer, New York

    Google Scholar 

  • Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001) Diversity and productivity in a long-term grassland experiment. Science 294:843–845

    Article  CAS  PubMed  Google Scholar 

  • Tilman D, Reich P, Knops JMH (2006) Diversity and ecosystem stability in a decade-long grassland experiment. Nature 441:629–632

    Article  CAS  PubMed  Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci U S A 108(50):20260–20264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tomich TP, Brodt S, Ferris H, Galt R, Horwath WR et al (2011) Agroecology: a review from a global-change perspective. Annu Rev Environ Resour 36:193–222

    Article  Google Scholar 

  • Uphoff N (2002) Agroecological innovations. Increasing food production with participatory development. Earthsan, London

    Google Scholar 

  • Vandermeer JH (2011) The ecology of agroecosystems. Jones and Bartlett Publishing, Sudbury

    Google Scholar 

  • Verma SB et al (2005) Annual carbon dioxide exchange in irrigated and rainfed maize-based agroecosystems. Agr Forest Meteorol 131(1-2):77–96

    Article  Google Scholar 

  • Vogt G (2007) The origins of organic farming. In: Lockeretz W (ed) Organic farming an international history. CAB International, Cambridge, MA, pp 9–29

    Chapter  Google Scholar 

  • Von Liebig J (1840) ueber das studium der naturwissenschaften und über den zustand der chemie in preußen. F. Vieweg und Sohn, Braunschweig

    Google Scholar 

  • Weiner J, Andersen SB, Wille WKM, Griepentrog HW, Olsen JM (2010) Evolutionary agroecology: the potential for cooperative, high density, weed-suppressing cereals”. Evol Appl 3(5–6):473–479

    Article  PubMed Central  PubMed  Google Scholar 

  • Wezel A, Soldat V (2009) A quantitative and qualitative historical analysis of the scientific discipline of agroecology. Int J Agric Sustain 7(1):3–18

    Article  Google Scholar 

  • Wezel A, Bellon S, Doré T, Francis C, Vallod D, David C (2009) Agroecology as a science, a movement, and a practice. A review. Agron Sustain Dev 29:503–515

    Article  Google Scholar 

  • Wezel A et al (2014) Agroecological practices for sustainable agriculture. A review. Agron Sustain Dev 34(1):1–20

    Article  Google Scholar 

  • World Commission on Environment and Development (1987) Our common future. Oxford University Press, Oxford

    Google Scholar 

  • Zehnder G et al (2007) Arthropod pest management in organic crops. Annu Rev Entomol 52:57–80

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the USU agroecology discussion group for stimulating discussion and the conception of ideas presented in this paper and to M. Brym, J. Vandermeer, and a number of anonymous reviewers for thoughtful comments regarding earlier versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zachary T. Brym .

Editor information

Editors and Affiliations

Supplementary Tables

Supplementary Tables

Table S1 Top ten citations for the search term ‘agroecology’ OR ‘agroecological’
Table S2 Top ten citations for the search term ‘principle’
Table S3 Top ten citations for the search term ‘practice’
Table S4 Top ten citations for the search term ‘research’
Table S5 Top ten citations for the search term ‘d esign’
Table S6 Top ten citations for the search term ‘movement’
Table S7 Top ten citations for the search term ‘ systems’
Table S8 Top ten citations for the search term ‘biodiversity’
Table S9 Top ten citations for the search term ‘resilience’

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brym, Z.T., Reeve, J.R. (2016). Agroecological Principles from a Bibliographic Analysis of the Term Agroecology. In: Lichtfouse, E. (eds) Sustainable Agriculture Reviews. Sustainable Agriculture Reviews, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-26777-7_5

Download citation

Publish with us

Policies and ethics