Skip to main content

Near-Field Thermal Radiation

  • Reference work entry
  • First Online:
Handbook of Thermal Science and Engineering
  • 8150 Accesses

Abstract

Near-field, or nanoscale, thermal radiation is a regime arising when at least one characteristic length of the problem, namely, the size of the bodies and/or their separation distance, is comparable to or smaller than the wavelength. The goal of this chapter is to provide the basic information necessary to understand and analyze near-field thermal radiation problems. The fluctuational electrodynamics framework, consisting of Maxwell’s equations augmented by fluctuating current sources representing thermal emission, is reviewed. Equations for the energy density and radiative heat flux expressed in terms of the temperature of a heat source are derived. The different electromagnetic modes emitted by a heat source, namely, propagating modes, evanescent modes generated by total internal reflection, and surface polaritons, are explained. Thermal emission in the near field of a heat source and far-field emission by a subwavelength heat source are discussed. Finally, radiative heat transfer exceeding the blackbody limit between two bulk materials is reviewed, and a general approach for predicting near-field radiative heat transfer in complex three-dimensional geometries, called the thermal discrete dipole approximation, is introduced. At the end of each section, references discussing advanced and specialized topics in near-field thermal radiation are listed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Babuty A, Joulain K, Chapuis P-O, Greffet J-J, De Wilde Y (2013) Blackbody spectrum revisited in the near field. Phys Rev Lett 110:146103

    Article  Google Scholar 

  • Balanis CA (2012) Advanced engineering electromagnetics, 2nd edn. Wiley, New York

    Google Scholar 

  • Basu S (2016) Near-field radiative heat transfer at nanometer distances. Elsevier, Oxford

    Google Scholar 

  • Basu S, Zhang Z (2009) Maximum energy transfer in near-field thermal radiation at nanometer distances. J Appl Phys 105:093535

    Article  Google Scholar 

  • Basu S, Zhang ZM, CJ F (2009) Review of near-field thermal radiation and its application to energy conversion. Int J Energy Res 33:1203–1232

    Article  Google Scholar 

  • Ben-Abdallah P, Biehs S-A (2015) Contactless heat flux control with photonic devices. AIP Adv 5:053502

    Article  Google Scholar 

  • Ben-Abdallah P, Joulain K (2010) Fundamental limits for noncontact transfers between two bodies. Phys Rev B 82:121419

    Article  Google Scholar 

  • Ben-Abdallah P, Joulain K, Drevillon J, Domingues G (2009) Near-field heat transfer mediated by surface wave hybridization between two films. J Appl Phys 106:044306

    Article  Google Scholar 

  • Ben-Abdallah P, Biehs S-A, Joulain K (2011) Many-body radiative heat transfer theory. Phys Rev Lett 107:114301

    Article  Google Scholar 

  • Bernardi MP, DuprĂ© O, Blandre E, Chapuis P-O, Vaillon R, Francoeur M (2015) Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators. Sci Rep 5:11626

    Article  Google Scholar 

  • Bernardi MP, Milovich D, Francoeur M (2016) Radiative heat transfer exceeding the blackbody limit between macroscale planar surfaces separated by a nanosize vacuum gap. Nat Commun 7:12900

    Article  Google Scholar 

  • Biehs S-A, Greffet J-J (2010) Near-field heat transfer between a nanoparticle and a rough surface. Phys Rev B 81:245414

    Article  Google Scholar 

  • Biehs S-A, Reddig D, Holthaus M (2007) Thermal radiation and near-field energy density of thin metallic films. Eur Phys J B 55:237–251

    Article  Google Scholar 

  • Biehs S-A, Huth O, RĂĽting F (2008) Near-field radiative heat transfer for structured surfaces. Phys Rev B 78:085414

    Article  Google Scholar 

  • Biehs S-A, Rousseau E, Greffet J-J (2010) Mesoscopic description of radiative heat transfer at the nanoscale. Phys Rev Lett 105:234301

    Article  Google Scholar 

  • Biehs S-A, Ben-Abdallah P, Rosa FSS, Joulain K, Greffet J-J (2011) Nanoscale heat flux between nanoporous materials. Opt Express 19:A1088–A1103

    Article  Google Scholar 

  • Biehs S-A, Tschikin M, Ben-Abdallah P (2012) Hyperbolic metamaterials as an analog of a blackbody in the near field. Phys Rev Lett 109:104301

    Article  Google Scholar 

  • Biehs S-A, Tschikin M, Messina R, Ben-Abdallah P (2013) Super-Planckian near-field thermal emission with phonon-polaritonic hyperbolic metamaterials. Appl Phys Lett 102:131106

    Article  Google Scholar 

  • Blandre E, Chapuis P-O, Vaillon R (2016) Spectral and total temperature-dependent emissivities of few-layer structures on a metallic substrate. Opt Express 24:A374–A387

    Article  Google Scholar 

  • Chang J-Y, Yang Y, Wang L (2015) Tungsten nanowire based hyperbolic metamaterial emitters for near-field thermophotovoltaic applications. Int J Heat Mass Transf 87:237–247

    Article  Google Scholar 

  • Chapuis P-O, Laroche M, Volz S, Greffet J-J (2008) Radiative heat transfer between metallic nanoparticles. Appl Phys Lett 92:201906

    Article  Google Scholar 

  • Chapuis P-O, Laroche M, Volz S, Greffet J-J (2010) Erratum: Radiative heat transfer between metallic nanoparticles. Appl Phys Lett 97:269903

    Article  Google Scholar 

  • Chen G (2005) Nanoscale energy transport and conversion. Oxford University Press, New York

    Google Scholar 

  • Chew WC (1995) Waves and fields in inhomogeneous media. IEEE Press, New York

    Google Scholar 

  • Chiloyan V, Garg J, Esfarjani K, Chen G (2015) Transition from near-field thermal radiation to phonon heat conduction at sub-nanometre gaps. Nat Commun 6:6755

    Article  Google Scholar 

  • De Wilde Y, Formanek F, Carminati R, Gralak B, Lemoine P-A, Joulain K, Mulet J-P, Chen Y, Greffet J-J (2006) Thermal radiation scanning tunnelling microscopy. Nature 444:740–743

    Article  Google Scholar 

  • Didari A, Mengüç MP (2014) J Quant Spectrosc Radiat Transf 146:214–226

    Article  Google Scholar 

  • Didari A, Mengüç MP (2015a) Near- to far-field coherent thermal emission by surfaces coated by nanoparticles and the evaluation of effective medium theory. Opt Express 23:A547–552

    Article  Google Scholar 

  • Didari A, Mengüç MP (2015b) Near-field thermal radiation transfer by mesoporous metamaterials. Opt Express 23:A1253–1258

    Article  Google Scholar 

  • Didari A, Mengüç MP (2016) Proceedings of the 8th international symposium on radiative transfer, Cappadocia, 6–10 June, 2016

    Google Scholar 

  • DiMatteo RS, Greiff P, Finberg SL, Young-Waithe KA, Choy HKH, Masaki MM, Fonstad CG (2001) Enhanced photogeneration of carriers in a semiconductor via coupling across a nonisothermmal nanoscale vacuum gap. Appl Phys Lett 79:1894–1896

    Article  Google Scholar 

  • Domingues G, Volz S, Joulain K, Greffet J-J (2005) Heat transfer between two nanoparticles through near field interaction. Phys Rev Lett 94:085901

    Article  Google Scholar 

  • Domoto GA, Boehm RF, Tien CL (1970) Experimental investigation of radiative transfer between metallic surfaces at cryogenic temperatures. J Heat Transf 92:412–416

    Article  Google Scholar 

  • Edalatpour S, Francoeur M (2013) Size effect on the emissivity of thin films. J Quant Spectrosc Radiat Transf 118:75–85

    Article  Google Scholar 

  • Edalatpour S, Francoeur M (2014) The thermal discrete dipole approximation (T-DDA) for near-field radiative heat transfer simulations in three-dimensional arbitrary geometries. J Quant Spectrosc Radiat Transf 133:364–373

    Article  Google Scholar 

  • Edalatpour S, Francoeur M (2016) Near-field radiative heat transfer between arbitrarily shaped objects and a surface. Phys Rev B 94:045406

    Article  Google Scholar 

  • Edalatpour S, Cuma M, Trueax T, Backman R, Francoeur M (2015) Convergence analysis of the thermal discrete dipole approximation. Phys Rev E 91:063307

    Article  Google Scholar 

  • Edalatpour S, DeSutter J, Francoeur M (2016) Near-field thermal electromagnetic transport: an overview. J Quant Spectrosc Radiat Transf 178:14–21

    Article  Google Scholar 

  • Feng C, Tang Z, Yu J, Sun C (2013) A MEMS device capable of measuring near-field thermal radiation between membranes. Sensors 13:1998–2010

    Article  Google Scholar 

  • Francoeur M, Mengüç MP (2008) Role of fluctuational electrodynamics in near-field radiative heat transfer. J Quant Spectrosc Radiat Transf 109:280–293

    Article  Google Scholar 

  • Francoeur M, Mengüç MP, Vaillon R (2009) Solution of near-field thermal radiation in one-dimensional layered media using dyadic Green’s functions and the scattering matrix method. J Quant Spectrosc Radiat Transf 110:2002–2018

    Article  Google Scholar 

  • Francoeur M, Mengüç MP, Vaillon R (2010a) Spectral tuning of near-field radiative heat flux between two thin silicon carbide films. J Phys D Appl Phys 43:075501

    Article  Google Scholar 

  • Francoeur M, Mengüç MP, Vaillon R (2010b) Local density of electromagnetic states within a nanometric gap formed between two thin films supporting surface phonon polaritons. J Appl Phys 107:034313

    Article  Google Scholar 

  • Francoeur M, Mengüç MP, Vaillon R (2011a) Coexistence of multiple regimes for near-field thermal radiation between two layers supporting surface phonon polaritons in the infrared. Phys Rev B 84:075436

    Article  Google Scholar 

  • Francoeur M, Vaillon R, Mengüç MP (2011b) Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators. IEEE Trans Energy Convers 26:686–698

    Article  Google Scholar 

  • Francoeur M, Basu S, Petersen SJ (2011c) Electric and magnetic surface polariton mediated near-field radiative heat transfer between metamaterials made of silicon carbide particles. Opt Express 19:18774–18788

    Article  Google Scholar 

  • Fu CJ, Zhang ZM (2006) Nanoscale radiation heat transfer for silicon at different doping levels. Int J Heat Mass Transf 49:1703–1718

    Article  MATH  Google Scholar 

  • Golyk VA, KrĂĽger M, Kardar M (2012) Heat radiation from long cylindrical objects. Phys Rev E 85:046603

    Article  Google Scholar 

  • Greffet J-J, Carminati R, Joulain K, Mulet J-P, Mainguy S, Chen Y (2002) Coherent emission of light by thermal sources. Nature 416:61–64

    Article  Google Scholar 

  • Griffiths DJ (2014) Introduction to electrodynamics, 4th edn. Pearson, Upper Saddle River

    Google Scholar 

  • Guha B, Otey C, Poitras CB, Fan S, Lipson M (2012) Near-field radiative cooling of nanostructures. Nano Lett 12:4546–4550

    Article  Google Scholar 

  • Hammonds Jr JS (2006) Thermal transport via surface phonon polaritons across a two-dimensional pore. Appl Phys Lett 88:041912

    Article  Google Scholar 

  • Hargreaves CM (1969) Anomalous radiative transfer between closely-spaced bodies. Phys Lett A 30:491–492

    Article  Google Scholar 

  • Hecht E (2002) Optics, 4th edn. Addison Wesley, San Francisco

    Google Scholar 

  • Howell JR, Mengüç MP, Siegel R (2016) Thermal radiation heat transfer, 6th edn. CRC Press, Boca Raton

    Google Scholar 

  • Hu L, Narayanaswamy A, Chen XY, Chen G (2008) Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law. Appl Phys Lett 92:133106

    Article  Google Scholar 

  • Ijiro T, Yamada N (2015) Near-field radiative heat transfer between two parallel SiO2 plates with and without microcavities. Appl Phys Lett 106:023103

    Article  Google Scholar 

  • Ito K, Miura A, Iizuka H, Toshiyoshi H (2015) Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer. Appl Phys Lett 106:083504

    Article  Google Scholar 

  • Jackson JD (1998) Classical electrodynamics, 3rd edn. Academic, New York

    MATH  Google Scholar 

  • Jones AC, Raschke MB (2012) Thermal infrared near-field spectroscopy. Nano Lett 12:1475–1481

    Article  Google Scholar 

  • Jones AC, O’Callahan BT, Yang HU, Raschke MB (2013) The thermal near-field: coherence, spectroscopy, heat-transfer, and optical forces. Prog Surf Sci 88:349–392

    Article  Google Scholar 

  • Joulain K (2006) Radiative transfer on short length scales. Microscale Nanoscale Heat Transf 107:107–131

    Article  MATH  Google Scholar 

  • Joulain K, Mulet J-P, Marquier F, Carminati R, Greffet J-J (2005) Surface electromagnetic waves thermally excited: radiative heat transfer, coherence properties and Casimir forces revisited in the near field. Surf Sci Rep 57:59–112

    Article  Google Scholar 

  • Joulain K, Drevillon J, Ben-Abdallah P (2010) Noncontact heat transfer between metamaterials. Phys Rev B 81:165119

    Article  Google Scholar 

  • Kim K, Song B, Fernandez-Hurtado V, Lee W, Jeong W, Cui L, Thompson D, Feist J, Reid MTH, Garcia-Vidal FJ, Cuevas JC, Meyhofer E, Reddy P (2015) Radiative heat transfer in the extreme near field. Nature 528:387–391

    Article  Google Scholar 

  • Kittel A, MĂĽller-Hirsch W, Parisi J, Biehs S-A, Reddig D, Holthaus M (2005) Near-field heat transfer in a scanning thermal microscope. Phys Rev Lett 95:224301

    Article  Google Scholar 

  • Kralik T, Hanzelka P, Zobac M, Musilova V, Fort T, Horak M (2012) Strong near-field enhancement of radiative heat transfer between metallic surfaces. Phys Rev Lett 109:224302

    Article  Google Scholar 

  • KrĂĽger M, Bimonte G, Emig T, Kardar M (2012) Trace formulas for nonequilibrium Casimir interactions, heat radiation, and heat transfer for arbitrary objects. Phys Rev B 86:115423

    Article  Google Scholar 

  • Landau LD, Lifshitz EM (1960) Electrodynamics of continuous media. Addison-Wesley, Reading

    MATH  Google Scholar 

  • Laroche M, Carminati R, Greffet J-J (2006) Near-field thermophotovoltaic energy conversion. J Appl Phys 100:063704

    Article  Google Scholar 

  • Lee BJ, Zhang ZM (2006) Design and fabrication of planar multilayer structures with coherent thermal emission characteristics. J Appl Phys 100:063529

    Article  Google Scholar 

  • Lee BJ, Zhang ZM (2007) Coherent thermal emission from modified periodic multilayer structures. J Heat Transf 129:17–26

    Article  Google Scholar 

  • Lee BJ, CJ F, Zhang ZM (2005) Coherent thermal emission from one-dimensional photonic crystals. Appl Phys Lett 87:071904

    Article  Google Scholar 

  • Lee BJ, Wang LP, Zhang ZM (2008) Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film. Opt Express 16:11328–11336

    Article  Google Scholar 

  • Lim M, Lee SS, Lee BJ (2015) Radiative heat transfer exceeding the blackbody limit between macroscale planar surfaces separated by a nanosize vacuum gap. Phys Rev B 91:195136

    Article  Google Scholar 

  • Liu X, Wang L, Zhang ZM (2015) Near-field thermal radiation: recent progress and outlook. Nanoscale Microscale Thermophys Eng 19:98–126

    Article  Google Scholar 

  • Loomis JJ, Maris HJ (1994) Theory of heat transfer by evanescent electromagnetic waves. Phys Rev B 50:18517–18524

    Article  Google Scholar 

  • Lussange J, Guerout R, Rosa FSS, Greffet J-J, Lambrecht A, Reynaud S (2012) Phys Rev B 86:085432

    Article  Google Scholar 

  • Maier SA (2007) Plasmonics. Springer, New York

    Google Scholar 

  • Messina R, Antezza M (2011a) Casimir-Lifshitz force out of thermal equilibrium and heat transfer between arbitrary bodies. Europhys Lett 95:61002

    Article  Google Scholar 

  • Messina R, Antezza M (2011b) Scattering-matrix approach to Casimir-Lifshitz force and heat transfer out of thermal equilibrium between arbitrary bodies. Phys Rev A 84:042102

    Article  Google Scholar 

  • Messina R, Tschikin M, Biehs S-A, Ben-Abdallah P (2013) Fluctuation-electrodynamic theory and dynamics of heat transfer in systems of multiple dipoles. Phys Rev B 88:104307

    Article  Google Scholar 

  • Miller OD, Johnson SG, Rodriguez AW (2015) Shape-independent limits to near-field radiative heat transfer. Phys Rev Lett 115:204302

    Article  Google Scholar 

  • Mishchenko MI (2014) Electromagnetic scattering by particles and particle groups. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Modest MF (2013) Radiative heat transfer, 3rd edn. Elsevier, San Diego

    Google Scholar 

  • Moghaddam ST, ErtĂĽrk H, Mengüç MP (2016) Proceedings of the 8th international symposium on radiative transfer, Cappadocia, 6–10 June, 2016

    Google Scholar 

  • Mulet J-P, Joulain K, Carminati R, Greffet J-J (2001) Nanoscale radiative heat transfer between a small particles and a plane surface. Appl Phys Lett 78:2931–2933

    Article  Google Scholar 

  • Mulet J-P, Joulain K, Carminati R, Greffet J-J (2002) Enhanced radiative heat transfer at nanometric distances. Nanoscale Microscale Thermophys Eng 6:209–222

    Article  Google Scholar 

  • Narayanaswamy A, Chen G (2003) Surface modes for near field thermophotovoltaics. Appl Phys Lett 82:3544–3546

    Article  Google Scholar 

  • Narayanaswamy A, Chen G (2004) Thermal emission control with one-dimensional metallodielectric photonic crystals. Phys Rev B 70:125101

    Article  Google Scholar 

  • Narayanaswamy A, Chen G (2005a) Direct computation of thermal emission from nanostructures. Ann Rev Heat Transf 14:169–195

    Article  Google Scholar 

  • Narayanaswamy A, Chen G (2005b) Thermal radiation in 1D photonic crystals. J Quant Spectrosc Radiat Transf 93:175–183

    Article  Google Scholar 

  • Narayanaswamy A, Chen G (2008) Thermal near-field radiative transfer between two spheres. Phys Rev B 77:075125

    Article  Google Scholar 

  • Narayanaswamy A, Shen S, Chen G (2008) Near-field radiative heat transfer between a sphere and a substrate. Phys Rev B 78:115303

    Article  Google Scholar 

  • Novotny L, Hecht B (2006) Principles of nano-optics. Cambridge University Press, New York

    Book  Google Scholar 

  • O’Callahan BT, Lewis WE, Jones AC, Raschke MB (2014) Spectral frustration and spatial coherence in thermal near-field spectroscopy. Phys Rev B 89:245446

    Article  Google Scholar 

  • Otey C, Fan S (2011) Numerically exact calculations of electromagnetic heat transfer between a dielectric sphere and a plate. Phys Rev B 84:245431

    Article  Google Scholar 

  • Otey CR, Lau WT, Fan S (2010) Thermal rectification through vacuum. Phys Rev Lett 104:154301

    Article  Google Scholar 

  • Ottens RS, Quetschke V, Wise S, Alemi AA, Lundock R, Mueller G, Reitze DH, Tanner DB, Whiting BF (2011) Near-field radiative heat transfer between macroscopic planar surfaces. Phys Rev Lett 107:014301

    Article  Google Scholar 

  • Park K, Zhang ZM (2013) Fundamentals and applications of near-field radiative energy transfer. Front Heat Mass Transf 4:013001

    Article  Google Scholar 

  • Park K, Basu S, King WP, Zhang ZM (2008) Performance analysis of near-field thermophotovoltaic devices considering absorption distribution. J Quant Spectrosc Radiat Transf 109:305–316

    Article  Google Scholar 

  • Pendry JB (1999) Radiative exchange of heat between nanostructures. J Phys Condens Matter 11:6621–6633

    Article  Google Scholar 

  • Petersen SJ, Basu S, Francoeur M (2013a) Near-field thermal emission from metamaterials. Photonics Nanostruct Fundam Appl 11:167–181

    Article  Google Scholar 

  • Petersen SJ, Basu S, Raeymaekers B, Francoeur M (2013b) Tuning near-field thermal radiative properties by quantifying sensitivity of Mie resonance-based metamaterials design parameters. J Quant Spectrosc Radiat Transf 129:277–286

    Article  Google Scholar 

  • Peterson AF, Ray SL, Mittra R (1998) Computational methods for electromagnetics. Oxford University Press, New York

    MATH  Google Scholar 

  • Planck M (1991) The theory of heat radiation. Dover Publications, New York

    MATH  Google Scholar 

  • Polder D, Van Hove M (1971) Theory of radiative heat transfer between closely spaced bodies. Phys Rev B 4:3303–3314

    Article  Google Scholar 

  • Polimeridis AG, Reid MTH, Jin W, Johnson SG, White JK, Rodriguez AW (2015) Fluctuating volume-current formulation of electromagnetic fluctuations in inhomogeneous media: incandescence and luminescence in arbitrary geometries. Phys Rev B 92:134202

    Article  Google Scholar 

  • Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer tracts in modern physics, vol 111. Springer, New York

    Book  Google Scholar 

  • Raman AP, Anoma MA, Zhu K, Rephaeli E, Fan S (2014) Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515:540–544

    Article  Google Scholar 

  • Rephaeli E, Raman A, Fan S (2013) Ultrabroadband photonic structures to achieve high-performance daytime Radiative cooling. Nano Lett 13:1457–1461

    Article  Google Scholar 

  • Rodriguez AJ, Ilic O, Bermel P, Celanovic I, Joannopoulos JD, Soljacic M, Johnson SG (2011) Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials. Phys Rev Lett 107:114302

    Article  Google Scholar 

  • Rodriguez AW, Reid MTH, Johnson SG (2012) Fluctuating surface-current formulation of radiative heat transfer for arbitrary geometries. Phys Rev B 86:220302(R)

    Google Scholar 

  • Rousseau E, Siria A, Jourdan G, Volz S, Comin F, Chevrier J, Greffet J-J (2009) Radiative heat transfer at the nanoscale. Nat Photonics 3:514–517

    Article  Google Scholar 

  • Rytov SM, Kravtsov YA, Tatarskii VI (1989) Principles of statistical radiophysics 3: elements of random fields. Springer, New York

    Book  MATH  Google Scholar 

  • Sasihitlu K, Narayanaswamy A (2011) Proximity effects in radiative heat transfer. Physical review B 83:161406(R).

    Google Scholar 

  • Shen S, Narayanaswamy A, Chen G (2009) Surface phonon polaritons mediated energy transfer between nanoscale gaps. Nano Lett 9:2909–2913

    Article  Google Scholar 

  • Shen S, Mavrokefalos A, Sambegoro P, Chen G (2012) Nanoscale thermal radiation between two gold surfaces. Appl Phys Lett 100:233114

    Article  Google Scholar 

  • Shi J, Liu B, Li P, Ng LY, Shen S (2015) Near-field energy extraction with hyperbolic metamaterials. Nano Lett 15:1217–1221

    Article  Google Scholar 

  • Sipe JE (1987) New Green-function formalism for surface optics. J Opt Soc Am B 4:481–489

    Article  Google Scholar 

  • Song B, Fiorino A, Meyhofer E, Reddy P (2015a) Near-field radiative thermal transport: from theory to experiment. AIP Adv 5:053503

    Article  Google Scholar 

  • Song B, Ganjeh Y, Sadat S, Thompson D, Fiorino A, Fernández-Hurtado V, Feist J, Garcia-Vidal FJ, Cuevas JC, Reddy P, Meyhofer E (2015b) Enhancement of near-field radiative heat transfer using polar dielectric thin films. Nat Nanotechnol 10:253–258

    Article  Google Scholar 

  • Song B, Thompson D, Fiorino A, Ganjeh Y, Reddy P, Meyhofer E (2016) Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps. Nat Nanotechnol 11:509–514

    Article  Google Scholar 

  • St-Gelais R, Guha B, Zhu L, Fan S, Lipson M (2014) Demonstration of strong near-field radiative heat transfer between integrated nanostructures. Nano Lett 14:6971–6975

    Article  Google Scholar 

  • St-Gelais R, Zhu L, Fan S, Lipson M (2016) Near-field radiative heat transfer between parallel structures in the deep subwavelength regime. Nat Nanotechnol 11:515–519

    Article  Google Scholar 

  • Tai C-T (1994) Dyadic Green’s functions in electromagnetic theory. IEEE Press, Piscataway

    MATH  Google Scholar 

  • Volokitin AI, Persson BNJ (2001) Radiative heat transfer between nanostructures. Phys Rev B 63:205404

    Article  Google Scholar 

  • Wang LP, Lee BJ, Wang XJ, Zhang ZM (2009) Spatial and temporal coherence of thermal radiation in asymmetric Fabry-Perot resonance cavities. Int J Heat Mass Transf 52:3024–3031

    Article  Google Scholar 

  • Wang LP, Basu S, Zhang ZM (2011) Direct and indirect methods for calculating thermal emission from layered structures with nonuniform temperatures. J Heat Transf 133:072701

    Article  Google Scholar 

  • Wen S-B (2010) Direct numerical simulation of near field thermal radiation based on wiener chaos expansion of thermal fluctuating current. J Heat Transf 132:072704

    Article  Google Scholar 

  • Whale MD, Cravalho EG (2002) Modeling and performance of microscale thermophotovoltaic energy conversion devices. IEEE Trans Energy Convers 17:130–142

    Article  Google Scholar 

  • Worbes L, Hellmann D, Kittel A (2013) Enhanced near-field heat flow of a monolayer dielectric island. Phys Rev Lett 110:134302

    Article  Google Scholar 

  • Xu J-B, Läuger K, Möller R, Dransfield K, Wilson IH (1994) Heat transfer between two metallic surfaces at small distances. J Appl Phys 76:7209–7216

    Article  Google Scholar 

  • Yang Y, Wang L (2016) Spectrally enhancing near-field radiative transfer between metallic gratings by exciting magnetic polaritons in nanometric vacuum gaps. Phys Rev Lett 117:044301.

    Google Scholar 

  • Yeh P (2005) Optical waves in layered media. Wiley, Hoboken

    Google Scholar 

  • Yurkin MA, Hoekstra AG (2007) The discrete dipole approximation: an overview and recent developments. J Quant Spectrosc Radiat Transf 106:558–589

    Article  Google Scholar 

  • Zhang ZM (2007) Micro/nanoscale heat transfer. McGraw-Hill, New York

    Google Scholar 

  • Zheng Z, Xuan Y (2011) Theory of near-field radiative heat transfer for stratified magnetic media. Int J Heat Mass Transf 54:1101–1110

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The author acknowledges the financial support of the National Science Foundation (Grants No. CBET 1253577 and CBET 1605584) and the US Army Research Office (Grant No. W911NF-14-1-0210).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Francoeur .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Francoeur, M. (2018). Near-Field Thermal Radiation. In: Handbook of Thermal Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-26695-4_63

Download citation

Publish with us

Policies and ethics