Skip to main content

Approximating the Restricted 1-Center in Graphs

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9486))

  • 994 Accesses

Abstract

This paper studies the restricted vertex 1-center problem (RV1CP) and restricted absolute 1-center problem (RA1CP) in general undirected graphs with each edge having two weights, cost and delay. First, we devise a simple FPTAS for RV1CP with \(O(mn^3(\frac{1}{\epsilon }+\log \log n))\) running time, based on FPTAS proposed by Lorenz and Raz (Oper. Res. Lett. 28(1999), 213–219) for computing end-to-end restricted shortest path (RSP). During the computation of the FPTAS for RV1CP, we derive a RSP distance matrix. Next, we discuss RA1CP in such graphs where the delay is a separable (e.g., linear) function of the cost on edge. We investigate an important property that the FPTAS for RV1CP can find a \((1+\epsilon )\)-approximation of RA1CP when the RSP distance matrix has a saddle point. In addition, we show that it is harder to find an approximation of RA1CP when the matrix has no saddle point. This paper develops a scaling algorithm with at most \(O(mn^3K(\frac{\log K}{\eta }+\log \log n))\) running time where K is a step-size parameter and \(\eta \) is a given positive number, to find a \((1+\eta )\)-approximation of RA1CP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bernstein, A.: Near linear time \((1+\epsilon )\)-approximation for restricted shortest paths in undirected graphs. In: Proceedings of the 23th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, pp. 189–201, Kyoto, Japan, January 2012

    Google Scholar 

  2. Eiselt, H.A., Marianov, V.: Foundations of Location Analysis. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  3. Ergun, F., Sinha, R., Zhang, L.: An improved FPTAS for restricted shortest path. Inf. Proc. Lett. 83(5), 287–291 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 34(3), 596–615 (1987)

    Article  MathSciNet  Google Scholar 

  5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  6. Hakimi, S.L.: Optimal locations of switching centers and medians of a graph. Oper. Res. 12(3), 450–459 (1964)

    Article  MATH  Google Scholar 

  7. Hakimi, S.L., Schmeichel, E.F., Pierce, J.G.: On \(p\)-centers in networks. Transport. Sci. 12(1), 1–15 (1978)

    Article  MathSciNet  Google Scholar 

  8. Hassin, R.: Approximation schemes for the restricted shortest path problem. Math. Oper. Res. 17, 36–42 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Karger, D.R., Koller, D., Phillips, S.J.: Finding the hidden path: time bounds for all-pairs shortest paths. SIAM J. Comput. 22, 1199–1217 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kariv, O., Hakimi, S.L.: An algorithmic approach to network location problems. I: the \(p\)-centers. SIAM J. Appl. Math. 22, 1199–1217 (1993)

    MathSciNet  MATH  Google Scholar 

  11. Lorenz, D., Raz, D.: A simple efficient approximation scheme for the restricted shortest path problem. Oper. Res. Lett. 28, 213–219 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pettie, S.: A new approach to all-pairs shortest paths on real-weighted graphs. Theor. Comp. Sci. 312(1), 47–74 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Phillips, C.: The network inhibition problem. In: Proceedings of the 25th Annual ACM Symposium on the Theory of Computing (STOC 1993), pp. 776–785, San Diego, CA, May 1993

    Google Scholar 

  14. Tansel, B.C., Francis, R.L., Lowe, T.J.: Location on networks: a survey. part I: the \(p\)-center and \(p\)-median problems. Manag. Sci. 29(4), 482–497 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Warburton, A.: Approximation of pareto optima in multiple-objective shortest path problems. Oper. Res. 35, 70–79 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

We thank the reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ding, W., Qiu, K. (2015). Approximating the Restricted 1-Center in Graphs. In: Lu, Z., Kim, D., Wu, W., Li, W., Du, DZ. (eds) Combinatorial Optimization and Applications. Lecture Notes in Computer Science(), vol 9486. Springer, Cham. https://doi.org/10.1007/978-3-319-26626-8_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26626-8_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26625-1

  • Online ISBN: 978-3-319-26626-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics